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Abstract
Closed-loop brain stimulation is increasingly used in level 4 epilepsy centers without an understanding of how the device behaves
on a daily basis. This lack of insight is a barrier to improving closed-loop therapy and ultimately understanding why some
patients never achieve seizure reduction. We aimed to quantify the accuracy of closed-loop seizure detection and stimulation on
the RNS device through extrapolating information derived frommanually reviewed ECoG recordings and comprehensive device
logging information. RNS System event logging data were obtained, reviewed, and analyzed using a custom-built software
package. Aweighted-means methodology was developed to adjust for bias and incompleteness in event logs and evaluated using
Bland–Altman plots and Wilcoxon signed-rank tests to compare adjusted and non-weighted (standard method) results. Twelve
patients implanted for a mean of 21.5 (interquartile range 13.5–31) months were reviewed. The mean seizure frequency reduction
post-RNS implantation was 40.1% (interquartile range 0–96.2%). Three primary levels of event logging granularity were
identified (ECoG recordings: 3.0% complete (interquartile range 0.3–1.8%); Event Lists: 72.9% complete (interquartile range
44.7–99.8%); Activity Logs: 100% complete; completeness measured with respect to Activity Logs). Bland–Altman interpre-
tation confirmed non-equivalence with unpredictable differences in both magnitude and direction. Wilcoxon signed rank tests
demonstrated significant (p < 10−6) differences in accuracy, sensitivity, and specificity at >5% absolute mean difference for
extrapolated versus standard results. Device behavior logged by the RNS System should be used in conjunction with careful
review of stored ECoG data to extrapolate metrics for detector performance and stimulation.
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Introduction

As early as 1954, Penfield reported the modulatory effects of
electrical stimulation on seizures, observed by electrocorticog-
raphy (ECoG) (Penfield and Jasper 1954). Based on this and
subsequent observation (Durand 1986; Kinoshita et al. 2004,
2005; Kossoff et al. 2004), the NeuroPace RNS System was
developed as a closed-loop brain modulation device capable
of detecting and responding to abnormal brain activity by
delivering programmable stimulation targeted to seizure foci,
with the intention of disrupting epileptiform activity before a
seizure can develop (Heck et al. 2014). The ability of the
device to respond to abnormal brain activity is contingent
upon the degree to which the physician-selected combination
of detection settings are suited for the particular seizure onset
pattern(s) observed in ECoG recordings for each patient (Sun
et al. 2008).

The efficacy of the RNS System has been demonstrated by
several multi-center outcomes studies, in which a median 55%
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of patients experienced a 53% reduction in seizure frequency
at 2 years and a median 70% of patients experienced a 78%
seizure frequency reduction at 6 years (Bergey et al. 2015;
Geller et al. 2017; Jobst et al. 2017). However, patients remain
at increased risk for severe complications, such as severe in-
juries and sudden unexplained death (SUDEP), during the
interval to seizure control (Banerjee et al. 2009). The increase
in responder rate and seizure reduction over time raises the
question of why some patients achieve a faster and greater
response.

One approach to this question is to explore the characteris-
tics of patients who are responders versus non-responders.
This approach, however, is insufficient to disentangle whether
poor patient response is due to suboptimal settings or intrinsic
patient characteristics, because it is severely confounded by
the heterogeneity of device behavior between patients. This
heterogeneity results from the interaction between the detec-
tion and stimulation settings and an individual patient’s dis-
tinct neurophysiological seizure onset patterns. Thus, we pro-
pose that the first step to improving closed-loop therapy is to
develop quantitative methods for evaluating device behavior,
defined by the type of neurophysiological event being stimu-
lated, the timing of stimulation relative to event onset, and the
rate of stimulation. This strategy extends significantly beyond
the scope of current analysis tools available via the NeuroPace
Patient Data Management System (PDMS).

Here, we report our comprehensive analysis of logging
information generated by the RNS System. Based on findings
of incomplete or overwritten information about detections and
stimulations and reporting bias, we hypothesized that extrap-
olation of information derived frommanually reviewed ECoG
recordings using comprehensive aggregate logging informa-
tion (which by itself lacks details about specific detections and
stimulations) would reveal a clinically significant and unpre-
dictable difference in device behavior, as compared to current,
standard methods available in the PDMS (S1 Table). Finally,
we report the results of the extrapolationmethod in the context
of clinical outcomes, to highlight the heterogeneity of device
behavior between patients.

Material and Methods

Study Design and Cohort Selection

We performed a retrospective chart review approved by the
University of Pittsburgh Institutional Review Board (IRB).
First, we collected RNS System device data and performed
an in-depth analysis of the logging capabilities. Second, we
used the information generated by this analysis to perform a
quantitative evaluation of device behavior (detections and
stimulations).

All subjects underwent intracranial monitoring via stereo-
electroencephalography (SEEG), prior to RNS therapy (RNS,
NeuroPace, Mountain View, CA, USA), as recommended by
a multidisciplinary epilepsy surgery team. RNS implantations
occurred consecutively between January 2015 and November
2017. All related clinical data were abstracted from the elec-
tronic medical records systems or obtained by patient surveys.
ECoG recordings and associated metadata generated by the
RNS System were obtained from the PDMS (accessed be-
tween November 2016 and December 2017).

Implantation and Programming

RNS electrodes were targeted to epileptogenic zones identi-
fied during intracranial monitoring via SEEG. No neural stim-
ulation was delivered for approximately one month after im-
plantation, in order to observe baseline brain activity and de-
tector performance. Patients, or their caregivers, were also
asked to keep a seizure diary to log the time, duration, and
manifestations of seizures. Once the clinical team reached
consensus on the presumed acceptable accuracy for the detec-
tion parameters, initial stimulation settings were configured
and enabled so that the device delivered detection-triggered
stimulation therapy.

The RNS System parameter space can be separated into
two main categories: detection parameters and stimulation pa-
rameters (S1 Fig). The three primary types of detectors are
bandpass, line length, and area, with additional built-in detec-
tors for saturation and noise. Two channels are selected to be
detection channels for a total of two detecting electrode pairs.
Next, up to two first-order Patterns, referred to as Pattern A
and Pattern B are configured. Each Pattern can be further
comprised of up to two second-order patterns, referred to as
Pattern A1, Pattern A2, Pattern B1, and Pattern B2. Each of
these second-order Patterns corresponds to a single detection
channel and detector. Stimulation can occur from all eight
electrodes, and settings are configured for up to five consecu-
tive discretely triggered stimulations, referred to as therapies,
comprised of up to two consecutive bursts each. The cathode
(positive) and anode (negative) electrode montage and current
affect the volume of tissue treated and must be configured for
each burst. The bursts of the first therapy only may be config-
ured to respond differently to specific Patterns. The total num-
ber of therapies in a given 24-h window are also limited by a
programmable amount.

On an approximately monthly basis, the clinical team
reviewed the information recorded by the device, as well as
patient reported outcomes. The team decided whether, and
how, to adjust the device detection or stimulation parameters
based on a combination of summary data obtained from the
standard PDMS interface and clinical interviews. The period
of time duringwhich detection and stimulation settings remain
consistent is referred to as a programming epoch. The primary

Neuroinform



factors driving RNS adjustments were the approximate daily
number of events and the number of long episodes and satu-
rations since the most recent programming epoch. This pro-
cess represents the current, or standard, method for evaluating
device behavior.

Data Acquisition

We obtained ECoG recordings from NeuroPace via an
encrypted USB drive on a quarterly basis. To obtain the ma-
jority of the data needed for analysis, including device detec-
tion and stimulation settings, event timestamps, total number
of events per interrogation, and summary logging data, we
created a custom HTML parsing tool in C#. NET to program-
matically load and transform data from the PDMS into our
local database on a weekly basis (Fig. 1). All data were loaded
in a SQL Server (Microsoft, Redmond, Washington, USA)
database using extract, transform, and load (ETL) code devel-
oped for SQL Server Integration Services. The database was
secured by schema, and the primary data set was de-identified
using an automated process. Patient identifiers were stored in
a separately secured database. This database and associated
software used in our subsequent analyses form the basis of the
BRAINStim© (Biophysically Rational Analysis for Informed
Neural Stimulation) platform.

Logging Analysis

We reviewed the different levels of logging available on the
PDMS, including ECoG Reports, Event List, Activity Log, and
Neurostimulator History. ECoG Reports, Event List, and
Activity Log are complementary log summaries of each inter-
rogation while the Neurostimulator History provides a histo-
gram summarizing the same information, separately located
on the PDMS. We assessed the level of detail available and

calculated the amount of data missing from each level of log-
ging, using the Activity Log as the source of truth for com-
pleteness for interrogation data (ECoG Reports, Event List,
and Activity Log), and the histogram_data_missing and
diagnostic_data_missing flags for the daily and hourly
Neurostimulator History.

Device Behavior Analysis

To evaluate device behavior, we looked at whether or not the
neurophysiological event being stimulated was an
electrographic ictal pattern (EIP). In this study, EIPs represent
probable seizure events, but we use this term since the confir-
mation of a seizure event requires additional clinical evidence
not available through the RNS System. First, we reviewed
ECoG recordings and calculated sensitivity, specificity, and
accuracy of the detectors with respect to EIPs by extrapolating
this information using logging data. Next, we calculated la-
tency to evaluate the timing of stimulation relative to seizure
onset. To look at rate of stimulation, we calculated the mean
number of stimulations delivered per day. We tested our hy-
pothesis, that the weighted method would reveal a clinically
significant difference in device behavior as compared to the
standard, non-weighted method, using Bland-Altman plots
and Wilcoxon signed rank tests. Finally, we calculated the
mean, median, interquartile range, and range of device behav-
iors generated by the extrapolated calculations to demonstrate
the heterogeneity of device behavior across patients.

All ECoG recordings were reviewed by an experienced
neurophysiologist (VK) to identify the presence or absence
of an EIP. True positive, false positive, true negative, and false
negative rates were calculated for each episode from the man-
ually reviewed ECoG data using the initial second-order
Pattern (e.g. Pattern A1, Pattern A2, etc.) to trigger (S2
Fig). Each second-order Pattern was further grouped by

Fig. 1 Flow diagram of data loading, pre-processing, manual review, and
calculations using the BRAINStim© platform. a Data crucial to the
analysis of RNS System performance are loaded from the PDMS using
a custom C#.NET HTML parsing tool. b Raw ECoG data, along with
hardware diagnostic information, are loaded from files provided by
NeuroPace. c ECoG data are sorted into groups by programming epoch,

which are exported as .EDF files. d ECoG data are manually reviewed,
and EIP onset and laterality are annotated. All data are imported back into
the database and merged with the original files. e Weighted calculation
scripts are executed on the database. f The results of the scripts are loaded
back into the database and used to generate figures, as well as to facilitate
further analysis
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episode length (episode versus long episode). To perform
weighted calculations, standard ECoG calculations were
weighted using the percentage of each trigger (e.g. Pattern
A1, Pattern A2, etc.) and pattern type (e.g. episode, long epi-
sode), as reported by the daily Neurostimulator History. As
shown below, Pattern accuracy for all detectors stratified by
episodes (A1 _ EECoGAcc) and long episodes (A1 _ LEECoGAcc)
were calculated first. Next, the weights were calculated using
the percentage of times a given Pattern triggered an episode
multiplied by (A1 _ EECoG) the percentage of Patterns for the
entire epoch (A1History). Long episode weights were calculated
by multiplying the percentage of times a given Pattern trig-
gered a long episode by the percentage of long episodes for
the entire epoch (LEHistory). Finally, the weights were applied
to each detector stratified by episode versus long episode and
summed, resulting in the weighted accuracy for the program-
ming epoch (PEAcc).

A1 EECoGAcc ¼ A1 EECoGTP þ A1 EECoGTNð Þ

= A1 EECoGTP þ A1 EECoGTN þ B1 EECoGTP þ B2 EECoGTNð Þ

A1 EWTHistory ¼ A1 EECoG= A1 EECoG þ A2 EECoG þ B1 EECoG þ B2 EECoGð Þ
� A1History= A1History þ A2History þ B1History þ B2History

� �

A1 LEWTHistory

¼ A1 LEECoG= A1 LEECoG þ A2 LEECoG þ B1 LEECoG þ B2 LEECoGð Þ

� LEHistory= LEHistory þ EHistory
� �

PEAcc ¼ A1 EECoGAcc � A1 EWTHistory þ A2 EECoGAcc

� A2 EWTHistory þ B1 EECoGAcc � B1 EWTHistory

þ B2 EECoGAcc � B2 EWTHistory þ A1 LEECoGAcc

� A1 LEWTHistory þ A2 LEECoGAcc

� A2 LEWTHistory þ B1 LEECoGAcc

� B1 LEWTHistory þ B2 LEECoGAcc

� B2 LEWTHistory

We repeated this weighted-mean methodology to calculate
detector latency, defined as the number of seconds elapsed
between the manually marked EIP onset and the first detection
event of the first episode of a given ECoG recording. Only
recordings in which the RNS System correctly identified an

EIP (true positive) were used, and recordings beginning with
an in-progress episode were excluded. The weighted mean
paradigmwas similarly used for each patient to calculate mean
number of stimulations per episode and EIPs per month. The
mean pattern detection rate per hour, total events per hour,
percentage of days reaching the daily therapy limit, number
of programming epochs, and time to enabling stimulation
were calculated directly from log data (no weighting was
necessary).

The number of ECoG recordings stored on the device at
any given time is limited to approximate four 90-s 4-channel
recordings, which represent only a subset of all recorded
events due to constant overwriting of data. To determine the
extent to which stored ECoGs may adequately reflect true
overall device behavior, we applied a weighted mean method-
ology to ECoG-dependent calculations (detector sensitivity,
specificity, accuracy, number of EIPs, and number of thera-
pies) and compared these results to those obtained using the
standard (non-weighted) PDMS methodology using Bland–
Altman plots (Bland and Altman 1986; Giavarina 2015). To
test our hypothesis, we performed Wilcoxon signed rank tests
of extrapolated versus standard calculations for the accuracy,
sensitivity, and specificity of each patient programming ep-
och, with clinical significance set to >5%.

We quantified heterogeneity of device behavior between
patients by calculating the mean, median, 25th and 75th per-
centiles, and range of the accuracy, sensitivity, specificity and
latency obtained by the extrapolated calculations. We addi-
tionally calculated the total number of stimulations delivered
to the left versus right hemisphere at 8.5 months post-
implantation for patients with bilateral lead placements, again
using the extrapolated results.

Clinical Data Acquisition and Analysis

We performed a retrospective review of the UPMC electronic
medical record to obtain medical history, surgical history, sei-
zure classifications, anti-epileptic drug regimens, and natural
course of disease. Due to the incomplete and inconsistent doc-
umentation of seizure activity, we evaluated clinical outcomes
using two complementary patient reported outcomes surveys.
To measure quality of life outcomes, we used the Personal
Impact of Epilepsy Scale (PIES) instrument, a compact 25
question survey which detects changes in impact of seizures,
medication side effects, impact of comorbidities, and overall
quality of life (Fisher et al. 2015). To measure clinical seizure
outcomes, we used as a custom questionnaire to document
seizure type and frequency, duration, intensity, and loss of
consciousness, as well as seizure diary and magnet swipe
compliance (S3 Fig) (Sun and Morrell 2014). These question-
naires were administered to RNS patients at their most recent
clinic visit, at which time they reported both pre- and post-
RNS outcomes.
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We calculated the mean, median, interquartile range, and
range for age at time of implant, years of uncontrolled sei-
zures, months implanted with the RNS System, and number
of failed anti-seizure drugs (ASDs). Quality of life was quan-
tified using the PIES instrument. Both the percent and abso-
lute improvement in pre- and post-RNS survey scores were
calculated and compared for each patient to determine wheth-
er quality of life improved, declined, or remained the same.
Both the percent and absolute change in seizure frequency,
duration, and severity pre- and post-RNS survey results were
compared for each patient. Finally, we used Pearson correla-
tion to quantify the degree to which EIPs correlate with patient
reported seizures for a corresponding one month period. All
statistical analyses were performed using MATLAB
(MathWorks, Natic, MA, USA) and R (R Core Team,
Vienna, Austria).

Results

Demographics and Adverse Events

Twelve patients were included in this analysis, with a mean
responsive stimulation therapy duration of 21.5 months (S2
Table; median 23.5; interquartile range 13.5–31; range 5–34).
Five out of 12 patients exhibited epilepsy of structural etiolo-
gy, as defined by the ILAE classification system (S3 Table)
(Berg et al. 2010; Fisher 2017). A total of 14,394 ECoG files
were processed, encompassing a total of 198.9 RNS-
implanted months. Analysis revealed a total number of 4827
EIPs, with amean of 71 EIPs per programming epoch (median
24; interquartile range 6.5–98; range 1–780). One patient
underwent resection and electrode repositioning 366 days af-
ter RNS-recorded ECoG revealed primarily unilateral seizure
onset, and subsequent data were excluded from our analyses.
Another patient experienced throbbing headaches post-
implantation that resolved within one month. There were no
other adverse events recorded and no surgical infections.

Logging Results

We found that the RNS System is limited in the granularity of
information reliably captured and made available via the
PDMS (Fig. 2). The richest source of information comes from
stored ECoG recordings, which includes up to 4 channels of
ECoG and corresponding event timestamps identifying
second-order Patterns and therapies. Because the onboard
storage space available for ECoG recordings on the device is
extremely limited, only a small subset of recordings is pre-
served relative to the continuous neural signal analyzed online
by the device. The mean percentage of triggered ECoG re-
cording files uploaded to the PDMS per programming epoch,
relative to total events (defined as the sum of pattern detection,

saturation, and magnet swipe events), was 3.0% (median
0.6%; interquartile range 0.3–1.8%; range 0–39.8%). The re-
mainder of the files were either not configured for storage and/
or overwritten due device storage constraints.

The next most detailed source of information comes from
the Event List, which includes the episode onset timestamp
and a summary of the second-order Patterns and therapies
that occurred. The Event List can hold up to approximately
700 events between interrogations, after which storage capac-
ity is reached and additional new events are lost. Relative to
total events, the Event Lists were 72.9% (median 80.0%; in-
terquartile range 44.7–99.8%; range 16.2–100%) complete in
our cohort. Finally, the Activity Log contains summary data for
first-order Patterns during the time period since the previous
interrogation. The mean number of hours between interroga-
tions was 30.3 (median 24; interquartile range 23–26; range
0–2583). The storage available for this information is suffi-
cient such that the device is unlikely to ever lose any summary
data. Separately, the Neurostimulator History contains daily
summary data going back up to 10 years and hourly summary
data going back up to 180 days. Summary data is overwritten
at 255 events in a one-hour period. Relative to total events, the
Neurostimulator History was 84.9% (median 100%, inter-
quartile range 72.0–100%, range 37.8–100%) complete in
our cohort.

Device Behavior Results

The mean time to enabled neural stimulation therapy was
45.9 days (median 37 days, interquartile range 29–66.75 days,
range 8–90 days). The mean number of programming events
was 3.7 per year per patient (median 3.5, interquartile range
2.8–4.3, range 1.8–6). Responsive stimulation activity was
characterized by a mean of 39.5 events per hour per patient
(median 26.6; interquartile range 8.7–51.2; range 0–244.5).
The mean number of stimulations per episode per patient
was 1.1 (median 1.1, interquartile range 1.0–1.2, range 0–5),
and the daily therapy limit (mean 2039.2, median 2000, inter-
quartile range 1000–3000, range 1000–4000) was reached for
5.6% of the total treatment days (median 1.2%, interquartile
range 0.2–8.6%, range 0–27.9%).

To evaluate the difference between standard and extrap-
olated methods, we calculated both standard (S) means and
means weighted by Neurostimulator History data (W), for
detection accuracy (S = 90.0%, median 94.8%, interquar-
tile range 84.3–98.8%, range 63.0–100%; W = 85.1%, me-
dian 89.7%, interquartile range 75.9–98.2%, range 45.0–
100%), sensitivity (S = 51.5%, median 50.0%, interquartile
range 48.7–50.1%, range 0–100%; W = 68.1%, median
74.9%, interquartile range 48.4–94.5%, range 0–100%),
and specificity (S = 93.2%, median 96.7%, interquartile
range 90.6–99.6%, range 64.5–100%; W = 84.6%, median
92.4%, interquartile range 75.9–99.6%, range 34.5–100%),
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for each epoch between programming changes (S4 Table).
The weighted mean detector latency was negative for three
of 71 total programming epochs evaluated (−1.073 s,
−0.278 s, −0.596 s), indicating that detection and

stimulation preceded seizure onset in these cases. We used
Bland–Altman plots to evaluate the difference between
standard and weighted average calculations, which re-
vealed a bias that was unpredictable in both magnitude

Fig. 3 a Bland–Altman plots. For weighted accuracy, there was a nega-
tive bias with significant dispersion, and a slight positive trend between
the mean and difference, with greater scatter as the mean decreases. For
weighted latency, there was a negative bias with minimal dispersion, and
some scattering at all values. For weighted sensitivity, there was a positive
bias with significant dispersion and no clear trend, but with less scatter
above a mean of 80%. For weighted specificity, there was a negative bias

moderate dispersion from the bias with a positive trend betweenmean and
difference, with greater scatter as the mean decreases. b Absolute mean
difference of standard and weighted calculations. Accuracy, sensitivity,
and specificity all have statistically, as well as clinically significant dif-
ferences (defined as a difference of >5%) in extrapolated versus standard
calculations. The difference between extrapolated and standard latency
calculations was not statistically significant
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Fig. 2 Levels of RNS System detailed and summary logging.
Completeness of each source of logging information relative to the
Activity Log, which is the most complete but least detailed logging
source, is shown in pie charts. Representative screen captures of the
NeuroPace PDMS provide a basic reference of the primary sources of

logging data used to perform our analyses. Logging data (top) comes
from the Reports tab for ECoG recordings (most detailed) and the inter-
rogationEvent List andActivity Log (most complete); additional summary
data (bottom) comes from the Neurostimulator History tab for daily and
hourly histogram data
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and direction, with limits of agreement ≥8% for all mea-
surements (Fig. 3a). Wilcoxon signed rank tests were sig-
nificant (p < 10−6) with >5% difference between extrapo-
lated and standard methods for accuracy, sensitivity, and
specificity (Fig. 3b).

The mean, median, 25th and 75th percentiles, and range for
accuracy, sensitivity, specificity, had a large spread with an
interquartile range of >20% for all metrics (Fig. 4a). Latency
had a tighter distribution but still with a large range (−1.1 s–
6.1 s). The mean total number of stimulations at 8.5 months
post-implant was 355,681 μC/cm2 (median 218,710 μC/cm2,
interquartile range 165,976–510,244 μC/cm2, range 73,556–
932,899 μC/cm2). The histogram revealed a difference in the

rate of stimulation therapy between patients, with some pa-
tients receiving greater than 10 times the charge amount, or
dosage, as others (Fig. 4b). In half of the patients with a bilat-
eral lead configuration, there was a difference in the rate at
which stimulation therapy was delivered to the left and right
hemispheres of ≥10%, as well.

Clinical Results

Themean score for patient compliance to using the RNSmagnet
to mark a seizure event was 2 (Almost never–Half of the time;
median 1, interquartile range 1–4, range 1–5), and compliance
with maintaining a seizure diary was 3 (Half of the time; median
2, interquartile range 1–3.75, range 1–5). One patient’s primary
caretaker passed away and PIES could not be administered.
Another patient moved away and could not be reached. A third
patient does not currently upload device recordings, due to not
having had any clinical seizures since the device was implanted.

The mean patient reported seizure frequency was 59.5 per
month (median 30.4, interquartile range 10.3–45.1, range 0–
327.4), prior to RNS implantation. The mean reduction in
patient reported seizure frequency was 40.1% (median
66.7%, interquartile range 0–96.2%, range − 11.4–100%)
with an absolute reduction of 10.9 seizures per month. The
mean reduction in seizure duration was 35.8% (median 8.7%,
interquartile range 0–82.0%, range − 9.1–100%), and the
mean reduction in severity score was 31.6% (median 26.3%,
interquartile range 1.7–80.8%, range 0–100%), with an abso-
lute reduction of 1.9 points. The mean time to follow-up was
21.5 months (Table 1; median 22.3, interquartile range 8.8–
33.3, range 5.8–36.5). An Engel score of III or better was
achieved in 7 patients (58.3%). Pearson correlation showed
a trend towards positive correlation between the number of
patient reported seizures and corresponding EIPs over a one
month period (r = 0.61, p = 0.06).

Discussion

We established an analysis pipeline to quantify the extent of
bias in electrophysiological event data reported from the RNS
System. We found significant bias in how events are reported,
secondary to data storage limitations on the device. Our find-
ings demonstrate that standard analysis methods available via
the PDMS to understand device behavior can provide mis-
leading results. For this reason, we developed a weighted-
means methodology to extrapolate device behavior and par-
tially compensate for data incompleteness and bias.

Logging Incompleteness and Bias

While it is understood that the RNS System has limited stor-
age capacity, the degree to which its recordings are incomplete

Fig. 4 a Boxplots of mean, median, 25th and 75th percentiles, and range
of accuracy, sensitivity, specificity, and latency. Wide interquartile ranges
for accuracy, sensitivity, and specificity (left axis), with disagreement
between themean (dashed) andmedian (solid), revealing a heterogeneous
and widely distributed differences in device behavior between patients.
Latency (right axis) has a relatively narrower interquartile range, a wide
range still exists. b Total stimulation per patient at 8.5 months post-im-
plant. There is significant variability in the rate at which stimulation
therapy is delivered between patients, with some patients receiving great-
er than 10 times the amount, or dosage, as others. For patients with a
bilateral lead configuration, the rate at which stimulation therapy is de-
livered to the left and right hemispheres can be uneven, as well
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and the potential impact on clinical evaluation of recorded
events previously has not been shown. This incompleteness
can be due to overload of detected events (either true interictal
activity or due overly sensitive detection settings), frequency
of patient interrogations, insufficient uploads to the laptop,
configuration of which recorded events to store, and when
the event occurred relative to device interrogation, as only
the most recent recordings are saved. The RNS System over-
writes the oldest ECoG recordings once the storage limit is
reached, which creates a temporally biased sample. In addi-
tion, selection bias is introduced when storage slots are allo-
cated to particular triggers, such as magnet swipes, scheduled
recordings, Pattern A, and Pattern B. Despite recent FDA
approval of the second generation RNS System, which has
double the storage capacity compared to the current genera-
tion, these biases will persist.

Device Behavior Reliability and Heterogeneity

While standard detector performance often reflected the gen-
eral nature of weighted detector performance, significant dif-
ferences in magnitude of the detection values were observed.
Interpretation of the Bland–Altman plots revealed non-
equivalence in all calculations, indicating that the ECoG re-
ports presented on the PDMS represent a significantly biased
sample of overall RNS System activity. Further, weighted
means were not consistently higher or lower than standard
means, demonstrating that general inferences about the direc-
tion or magnitude of bias cannot be made. Consequently, ob-
servations made solely using ECoG reports on the PDMS can
mislead a clinician to unnecessarily modify a well-performing
detector or continue a poorly performing detector. It is crucial
to appreciate that the ECoG recordings may represent only a
small and temporally biased view of what the RNS System is
actually detecting and stimulating.

Significant variability in detection accuracy was also ob-
served, where the percentages of types of neurophysiological
events being stimulated varied between patients. Likewise, we
observed extensive variability in the rate of stimulation, with
some patients receiving stimulation at greater than 10 times the
frequency of other patients. This heterogeneity with regard to
both what is being stimulated and how frequently the stimula-
tion is occurring should be considered when adjusting detection
and stimulation parameters, particularly for patients who do not
achieve the reported average seizure reduction rates.
Additionally, the challenge of adjusting detection thresholds is
mademore complex by the fact that seizure networks are evolv-
ing both via natural history of disease and bymodulatory effects
of stimulation (Kokkinos et al. 2019). As a result, there is an
expected need to regularly optimize detection and stimulation
based on monitoring of the closed-loop system.

The finding of a negative detector latency in three of 71
programming epochs is unexpected as it indicates that detection

and stimulation immediately preceded the EIP onset. One po-
tential explanation is that false positive stimulation may inad-
vertently precipitate an EIP event. Such an occurrence does not
necessarily correlate to a clinical seizure, and preemptive trig-
gering of a subclinical event could be one of themechanisms by
which the device therapeutically changes seizure dynamics.

Clinical Response

Approximately half of our patients demonstrated a good clinical
response to the RNS System at ≥20 months implanted. This
finding further corroborates the RNS clinical trial results of a
50% responder rate at 2 years. Changes in seizure frequency,
duration, and severity may reflect the modulatory effects of the
RNS System, and these quantifiable endpoints should be moni-
tored to evaluate treatment efficacy. It may be possible to detect
these changes using data captured by the RNS System to extrap-
olate the frequency, duration, and severity of EIPs. For example,
patient reported seizure frequency correlated strongly with EIPs
(despite a borderline p value), further indicating that the latter
may be a useful metric for evaluating patient response.

Limitations

This study was undertaken to address the limitations of working
with 90-s snippets of chronic data. While we believe our work
shows it is possible to improve upon current methods, we ac-
knowledge it is not possible to fully compensate for missing data.
The RNS System’s ability to perform extended recordings is ex-
tremely limited, as the proprietywandmust be continually pressed
to the scalp overlying the device. Because continuous monitoring
is not possible, the potential to miss EIPs (false negatives versus
true negatives) is inherent due to reliance on detector performance,
so we cannot be certain EIPs, and by inference clinical seizures,
are notmissed. In lieu of continuous recording,we used scheduled
recordings to gain insight into brain activity that does not trigger
the detector. In the future, physicians may consider continuous
scalp EEG post-implantation to augment weighted calculations
with a more complete neurophysiologic record.

The PDMS does not display raw data but rather is an ab-
straction layer that transforms the raw data into something
readable by a clinician. As a result, there are sometimes in-
consistencies and inaccuracies in what is reported on the
PDMS. For example, a magnet swipe may be recorded during
an ECoG episode but not displayed in the Event List. In an-
other scenario, programming changes made to RNS System
may be missing from the Programming Epochs tab if they are
not properly uploaded from the programming laptop.

The number of patients in this cohort limits statistical anal-
ysis. However, the primary focus of this study is to show that
current methods for evaluating device behavior are biased and
potentially misleading. A larger cohort will be necessary to
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address the question of how device behavior correlates with
closed-loop therapy outcomes. Other potential confounders in
correlating RNS System detector performance and stimulation
settings with outcomes are changes to the patient’s ASD reg-
imen, heterogeneity of seizure foci location and etiology, and
the effect of multidien rhythms in EIP activity on the temporal
bias of ECoG recordings (Baud et al. 2018).

Conclusions

In order to establish a more sophisticated knowledge base from
which to ground RNS System programming, we undertook a
detailed evaluation of the device capabilities and then built a
novel data acquisition and analysis platform to aid in
interpreting clinical and ECoG results in the context of the vast
parameter space that exists for recording and stimulating.
Activity logged by the RNS System is biased and incomplete
but can be used, in conjunction with manual review of stored
ECoG data, to extrapolate metrics for understanding device
behavior. These extrapolated metrics can be unpredictably and
significantly different from those derived from currently avail-
able metrics on the PDMS. This new framework is useful as an
endpoint for device behavior, especially in the context of mon-
itoring patient response to parameter changes, thereby provid-
ing basis for adjusting detection and stimulation settings.
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