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Abstract 

Though the fusiform is well-established as a key node in the face perception network, its 

role in facial expression processing remains unclear, due to competing models and 

discrepant findings. To help resolve this debate, we recorded from 17 subjects with 

intracranial electrodes implanted in face sensitive patches of the fusiform. Multivariate 

classification analysis showed that facial expression information is represented in 

fusiform activity, in the same regions that represent identity, though with a smaller effect 

size. Examination of the spatiotemporal dynamics revealed a functional distinction 

between posterior and mid-fusiform expression coding, with posterior fusiform showing 

an early peak of facial expression sensitivity at around 180 ms after subjects viewed a 

face and mid-fusiform showing a later and extended peak between 230 – 460 ms. These 

results support the hypothesis that the fusiform plays a role in facial expression 

perception and highlight a qualitative functional distinction between processing in 

posterior and mid-fusiform, with each contributing to temporally segregated stages of 

expression perception. 
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Introduction 

Face perception, including detecting a face, recognizing face identity, assessing sex, 

age, emotion, attractiveness, and other characteristics associated with the face, is critical 

to social communication. An influential cognitive model of face processing distinguishes 

processes associated with recognizing the identity of a face from those associated with 

recognizing expression 1. A face sensitive region of the lateral fusiform gyrus, sometimes 

called the fusiform face area, is a critical node in the face processing network 2-5 that has 

been shown to be involved in identity perception 6-10. What role, if any, the fusiform 

plays in face expression processing continues to be debated, particularly given the 

hypothesized cognitive distinction between identity and expression perception.  

Results demonstrating relative insensitivity of the fusiform to face dynamics 11 and 

reduced fusiform activity for attention to gaze direction 12 led to a model that proposed 

that this area was involved strictly in identity perception and not expression processing 2. 

This model provided neuroscientific grounding for the earlier cognitive model that 

hypothesized a strong division between identity and expression perception 1. However, 

some recent imaging studies directly probing whether the fusiform is sensitive to 

expression have shown mixed results 2,13-16. Positive findings for fusiform sensitivity to 

expression have led to the competing hypothesis that the division of face processing is 

not for identity and expression, but rather form/structure and motion 3. Notably though, 

even studies with positive results have not examined whether the same patches of the 

fusiform that code for identity also code for expression (see 14 for a study that examined 

both, but saw negative results for expression coding). Furthermore, some studies show 

the fusiform has an expression-independent identity code 6,8. 
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Beyond whether the fusiform responds differentially to expression, one key question 

is whether the fusiform intrinsically codes for expression or if differential responses are 

due to task-related and/or top-down modulation of fusiform activity 17. Assessing this 

requires a method with high temporal resolution to distinguish between early, more 

bottom-up biased activity, and later activity that likely involved recurrent interactions. 

Furthermore, a passive viewing or incidental task is required to exclude biases introduced 

by variable task demands across stimuli. The low temporal resolution of fMRI makes it 

difficult to disentangle early bottom-up processing from later top-down and recurrent 

processing 8. Some previous intracranial electroencephalography (iEEG) studies have 

used an explicit expression identification task, making task effects difficult to exclude 18-

20. Those that have used an implicit task have shown mixed results regarding whether 

early fusiform response is sensitive to expression 20,21. Furthermore, iEEG studies often 

lack sufficient subjects and population-level analysis to allow for a generalizable 

interpretation. 

To help mediate between these two models and clarify the role of the fusiform in 

facial expression perception, iEEG was recorded from 17 subjects with a total of 31 face 

sensitive electrodes in face sensitive patches of the fusiform gyrus while these subjects 

viewed faces with neutral, happy, sad, angry, and fearful expressions in a gender 

discrimination task. Multivariate temporal pattern analysis (MTPA) on the data from 

these electrodes was used to analyze the temporal dynamics of neural activity with 

respect to facial expression sensitivity in fusiform. In a subset of 7 subjects, identity 

coding was examined in the same electrodes also using MTPA. In addition to examining 

the overall patterns across all electrodes, the responses from and mid- and posterior 
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fusiform, as well as the left and right hemisphere, were compared. To supplement these 

iEEG results, a meta-analysis of 64 neuroimaging studies was done examining facial 

expression sensitivity in the fusiform. The results support the view that fusiform response 

is sensitive to facial expression and suggest that the posterior and mid-fusiform regions 

play a qualitatively different role in facial expression processing. 

 

 

Results 

 

Electrode selection and face sensitivity 

The locations of the 31 fusiform electrodes from 17 participants sensitive to faces are 

shown in Figure 1A and Table 1. The averaged event-related potential (ERP) and event-

related broadband gamma activity (ERBB) responses (see Methods for detailed 

definitions of ERP and ERBB) for each category across all channels are shown in Figure 

1C and Figure 1D respectively. The averaged sensitivity index (d’) for faces peaked at 

160 ms (d’ = 1.22, p < 0.01 in every channel, Figure 1B). Consistent with previous 

findings 8,22-24, a strong sensitivity for faces was observed in fusiform around 100-400 ms 

after stimulus onset.  
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Figure 1. The face sensitive electrodes in the fusiform. A) The localization of the 31 face 
sensitive electrodes in (or close to) fusiform area, mapped onto a common space based on 
MNI coordinates. We moved depth electrode locations to the nearest location on the 
overlying cortical surface, in order to visualize all the electrodes.  B) The timecourse of 
the sensitivity index (d’) for faces versus the other categories in the six-way classification 
averaged across all 31 fusiform electrodes. The shaded areas indicate standard error of 
the mean. The red line corresponds to p < 0.01 with Bonferroni correction for multiple 
comparisons across 60 time points. C) The ERP for each category averaged across all 
face sensitive fusiform electrodes. The shaded areas indicate standard error of the mean. 
D) The ERBB for each category averaged across all face sensitive fusiform electrodes. 
The shaded areas indicate standard error of the mean. 
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Table 1 MNI coordinates and facial expression sensitivity (d’) for all face sensitive 
electrodes. Electrode ID is labeled by subject number (SX) and electrode from that subject 
(a, b, etc.). Sensitivity to expression defined as p < 0.05 decoding accuracy corrected for 
multiple comparisons. 

Electrode 
ID X (mm) Y (mm) Z (mm) Peak time 

(ms) Peak d' Sensitive to 
expressions 

S1a 35 -59 -22 260 0.29 Y 
S1b 33 -53 -22 150 0.31 Y 
S1c 42 -56 -26 200 0.20 N 
S2a 40 -57 -23 170 0.34 Y 
S3a -33 -44 -31 580 0.18 N 
S4a -38 -36 -30 440 0.12 N 
S5a -38 -36 -20 300 0.25 Y 
S5b -42 -37 -19 330 0.25 Y 
S6a 34 -40 -11 540 0.24 Y 
S6b 39 -40 -10 490 0.33 Y 
S7a 36 -57 -21 100 0.42 Y 
S8a -22 -72 -9 100 0.23 Y 
S8b -40 -48 -23 170 0.38 Y 
S9a 32 -46 -7 180 0.34 Y 
S9b 36 -48 -8 160 0.40 Y 
S10a 29 -46 -15 310 0.31 Y 
S11a -25 -38 -17 580 0.36 Y 
S11b -34 -38 -18 400 0.46 Y 
S11c -49 -37 -20 430 0.27 Y 
S12a 41 -33 -19 70 0.06 N 
S12b 37 -51 -9 70 0.22 Y 
S12c 35 -59 -4 80 0.23 Y 
S13a 43 -36 -13 400 0.11 N 
S13b 44 -48 -11 190 0.10 N 
S14a -52 -54 -17 30 0.14 N 
S15a -37 -47 -10 180 0.64 Y 
S16a -39 -45 -11 160 0.03 N 
S17a -43 -53 -26 90 0.20 N 
S17b -46 -50 -28 110 0.31 Y 
S17c -30 -63 -20 120 0.27 Y 
S17d -45 -56 -25 40 0.13 N 
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Figure 2. The timecourse of the facial expression classification in fusiform. A) The 
locations of the electrodes with significant face expression decoding accuracy, with the 
posterior fusiform group colored in cyan and the mid-fusiform group colored in magenta. 
B) The timecourse of mean and standard error for pairwise classification between 
different face expressions in all 31 fusiform electrodes. Dashed line: p = 0.05 threshold 
with Bonferroni correction for 60 time points [600 ms with 10 ms stepsize]). C) The time 
of the peak classification accuracy was plotted against the MNI y-coordinate for each 
single electrode with significant expression classification accuracy. K-means clustering 
partitions these electrodes into posterior and mid- fusiform groups. D) The mean and 
standard error for pairwise classification between different face expressions in posterior 
fusiform electrodes and mid- fusiform electrodes. The posterior group peaked at 180 ms 
after stimulus onset and the mid-fusiform group had an extended peak starting at 230 ms 
and extending to 450 ms (both p < 0.05, binomial test, Bonferroni corrected). See 
supplement for receiver operator characteristic (ROC) curves validating classification 
analysis (Figure S1).  
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Facial expression classification at the individual and group level 

For each participant, the classification accuracy between each pair of facial 

expressions was estimated using 5-fold cross-validation (see Methods for details). As 

shown in Figure 2B, the averaged timecourse peaked at 190 ms after stimulus onset 

(average decoding at peak d’ = 0.12, p < 0.05, Bonferroni corrected for multiple 

comparisons). In addition to the grand average, on the single electrode level, 21 out of the 

31 electrodes from 12 out of 17 subjects showed a significant peak in their individual 

timecourses (p < 0.05, permutation test corrected for multiple comparisons). The 

locations of the significant electrodes are shown in Figure 2A and all electrodes are listed 

in Table 1. 

The effect size for the mean peak expression classification is relatively low. This is in 

part because the electrodes consisted of two distinct populations with different 

timecourses (see below). Additionally, due to the variability in electrode position, iEEG 

effect sizes can be lower in some cases than what would be seen with electrodes 

optimally placed over face patches. To assess whether this was the case, we examined the 

correspondence between face category decoding and expression decoding based on the 

logic that placement closer to face patches should lead to higher face category decoding 

accuracy. A significant positive correlation between the decoding accuracy (d’) for face 

category and the decoding accuracy (d’) for facial expressions was seen (Pearson 

correlation r = 0.57, N = 21, p = 0.007). This suggests that electrode position relative to 

face patches in the fusiform can explain some of the effect size variability for expression 

classification. That suggests the true effect size for expression classification for optimal 
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electrode placement may be closer to what was seen for electrodes with higher accuracy 

(0.4-0.6, see Table 1) rather than the mean across all electrodes. 

 

Spatiotemporal dynamics of facial expression decoding 

The next question we addressed was whether spatiotemporal dynamics of facial 

expression representation in fusiform was location dependent. Specifically, we compared 

the dynamics of expression sensitivity between left and right hemispheres, and between 

posterior and mid- fusiform regions for electrodes showing significant expression 

sensitivity. 

We first analyzed the lateralization effect for the expression coding in fusiform. The 

mean timecourses of decoding accuracy for left and right fusiform did not differ at the p 

< 0.05 uncorrected level at any time point (Figure S2).  

In contrast substantial differences were seen in the timing and representation of 

expression coding between posterior and mid- fusiform. This was first illustrated by 

plotting the time of the peak decoding accuracy in each individual electrode against the 

corresponding MNI y-coordinate of the electrode (Figure 2C). A qualitative difference 

was seen between the peak times for electrodes posterior to approximately y = -45 

compared to those anterior to that, rather than a continuous relationship between y-

coordinate and peak time. This was quantified by a clustering analysis using both 

Bayesian information criterion (BIC) 25 and Silhouette analysis 26 (Figure S3), which both 

showed evidence for a cluster-structure in the data (Bayes factor > 20) with k = 2 as the 

optimal number of clusters (mean Sillhouette coefficient = 0.59). The 2 clusters 

corresponded to the posterior and mid-fusiform (Figure 2C; see Supplemental 
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Information for detailed analysis on clustering and the selection of models with different 

values of k). The border between these data-driven clusters corresponds well with prior 

functional and anatomical evidence showing that the mid-fusiform face patch falls within 

a 1 cm disk centered around the anterior tip of mid-fusiform sulcus (MFS; which falls at 

y = -40 in MNI coordinates) with high probability 27. That would make the border 

between the mid-fusiform and posterior fusiform face patch approximately y = -45 in 

MNI coordinates, which is very close to the border produced by the clustering analysis (y 

= -45.9). 

The timecourse of the posterior and mid- fusiform clusters were then examined in 

detail. As shown in Figure 2D, the timecourse of decoding accuracy in the posterior 

group peaked at 180 ms after stimulus onset and the timecourse of mid-fusiform group 

first peaked at 230 ms and the peak extended until approximately 450 ms after stimulus 

onset.  

 

Representational Similarity Analysis 

A recent meta-analysis suggests that fusiform is particularly sensitive to the contrast 

between specific pairs of expressions 28. To examine this in iEEG data, the representation 

dissimilarity matrices (RDMs) for facial expressions in the early and late activity in 

posterior and mid-fusiform were computed (Figure 3). No contrasts between expressions 

showed significant differences in posterior fusiform in the late window or in mid-

fusiform in the early window (p > 0.1 in all cases, T-test), as expected due to the 

corresponding low overall classification accuracy. In the early posterior fusiform, 

expressions of negative emotions (fearful, angry) were dissimilar to happy and neutral 
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expressions (p < 0.05 in each case, T-test), but not very distinguishable from one another. 

In the late mid-fusiform activity, happy and neutral expressions were both distinguishable 

from expressions of negative emotions and from each other (p < 0.05 in each case, T-

test). The results showed partial consistency with a previous meta-analysis based on 

neuroimaging studies (consistent in angry vs. neutral, fearful vs. neutral, fearful vs. 

happy, and fear vs sad) 28. However, the previous meta-analysis also reported significant 

contrast in fearful vs. angry and angry vs. sad, which were absent in our results. 

One question is the degree to which the representation in fusiform reflects the 

physical properties of the images subjects were viewing versus a more abstract 

representation of emotion. To examine this question, an 17-dimensional facial feature 

space was constructed based on a computer vision algorithm 29. The features characterize 

structural and spatial frequency properties of each image, e.g. eye width, eyebrow length, 

nose height, eye-mouth width ratio, skin tone, etc. An RDM was then built between the 

expressions in this feature space and compared to the neural feature spaces. There was a 

significant correlation between posterior fusiform representation space in the early time 

window (Spearman’s rho = 0.24, p < 0.05, permutation test). The correlation between 

mid- fusiform representation space in the late time window and the facial feature space 

was smaller and did not reach statistical significance (Spearman’s rho = 0.15, p > 0.1, 

permutation test). This suggests the earlier representation reflects the physical aspects of 

the images more closely whereas the later representation may also reflect the emotional 

content more abstractly. 
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Figure 3. Representational similarity analysis (RSA) between the facial feature space 
and the representational spaces of posterior and mid- fusiform at both early and 
late stages. Top row: representational dissimilarity matrices (RDM) of posterior 
fusiform at early stage (left), RDM of posterior fusiform at late stage (right). Bottom row: 
RDM of mid-fusiform at early stage (left), RDM of mid-fusiform at late stage (right). 
Abbreviations: AF – fearful, AN – angry, HA – happy, NE – neutral, SA – sad.  
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Figure 4. The comparison between the decoding accuracy for face identities and 
facial expressions. The average peak d’ for face identity decoding (in blue) compared to 
the average d’ for facial expression decoding overall (in red), in posterior fusiform (in 
cyan), and in anterior fusiform (in magenta). (error bar: standard error, ** p < 0.01, * p < 
0.05, T-test). 
 

Comparison to Facial Identity Classification 

Given the strongly supported hypothesis the fusiform plays a central role in face 

identity recognition, the effect size of identity and expression coding in the fusiform was 

compared. Due to the relatively few repetitions of individual faces, individuation was 

examined in only the 7 subjects that had sufficient repetitions of each face identity 

allowing for multivariate classification of identity across expression; identity decoding 

was previously reported for 4 of these subjects in a recent study 8. Across the 7 total 

subjects (3 here and 4 reported previously), the mean peak d’ = 0.50 for face identity 
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decoding was significantly greater than the mean peak accuracy for facial expression 

decoding in the fusiform overall (t(26) = 2.64, p = 0.0069) as well as in both the posterior 

(t(18) = 2.08, p = 0.026) and mid-fusiform (t(13) = 2.02, p = 0.032) (Figure 4). With 

regards to the timing of identity (mean peak time = 314 ms) versus expression sensitivity, 

the posterior peak time for expression classification was significantly earlier than the 

peak time for identity (t(18) = 4.45, p = 0.0003), while the mid-fusiform extended peak 

time for expression classification overlapped with the peak time for identity.  

 

 

Discussion 

 

Multivariate classification methods were used to evaluate the encoding of facial 

expressions recorded from electrodes placed directly in face sensitive fusiform cortex. 

Though the effect size for expression classification is smaller than for identity 

classification, the results support a role for the fusiform in the processing of facial 

expressions. Electrodes that were sensitive to expression were also sensitive to identity, 

suggesting a shared neural substrate for identity and expression coding in the fusiform. 

The results also show that the posterior and mid- fusiform are dynamically involved in 

distinct stages of facial expression processing and have different representations of 

expressions. The differential representation and magnitude of the temporal displacement 

between the sensitivity in posterior and mid-fusiform suggests these are qualitatively 

distinct stages of facial expression processing and not merely a consequence of 

transmission or information processing delay along a feedforward hierarchy. 
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Fusiform is sensitive to facial expression 

The results here show that the fusiform is sensitive to expression, though the 

effect size for classification of expression in the fusiform using iEEG is small-to-

medium1 30. The results also suggest that the same patches of the fusiform that are 

sensitive to expression are sensitive to identity as well. Given the variability of the effect 

size due to the proximity of electrode placement relative to face patches, the relative 

effect size may be more informative than the absolute effect size. The magnitude for 

facial expression classification is approximately half what was seen for face identity 

classification. This suggests that while fusiform contributes to facial expression 

perception, it is to a lesser degree than face identity processing. Greater involvement in 

identity than expression perception is expected for a region involved in structural 

processing of faces because identity relies on this information more than expression as 

expression perception also relies on facial dynamics. These results support models that 

hypothesize fusiform involvement in form/structural processing, at least for posterior 

fusiform (see discussion on spatially and temporally segregated stages of processing 

below), which can support facial expression processing 3,5. These results do not support 

models that hypothesize a strong division between facial identity and expression 

processing 1,2. 

 To test what a brain region codes for one must examine its response for early, 

bottom-up activation during an incidental task or passive viewing 17, otherwise it is 

difficult to disentangle effects of task demands and top-down modulation. Indeed, 

																																																								
1	d’ is on the same scale as Cohen’s d and they are equivalent when the data is univariate 
Gaussian, so d’s between 0.2-0.5 are “small”	and	0.5-0.8	are	medium.	
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previous studies have demonstrated that extended fusiform activity, particularly in the 

broadband gamma range, is modulated by task-related information 8,31. Some previous 

iEEG studies of expression coding in the fusiform have used an explicit expression 

judgment task and examined only broadband gamma activity, making it difficult to draw 

definitive conclusions about fusiform expression coding from these results 18,19. One 

previous study that used an implicit task did not show evidence of expression sensitivity 

during the early stage of activity in the fusiform 20; another did show evidence of 

expression sensitivity, though it reported results only from a single subject 21. The results 

here show in a large iEEG sample that the early response of the fusiform most sensitive 

to bottom-up processing is modulated by expression, at least for the posterior fusiform. 

 The effect size for facial expression classification is consistent with mixed 

findings in the neuroimaging literature for expression sensitivity in the fusiform 2,13-16,19. 

IEEG generally has greater sensitivity and lower noise than non-invasive measures of 

brain activity. Methods with lower sensitivity, such as fMRI, would be expected to have a 

substantial false negative rate for facial expression coding in the fusiform. To quantify 

fMRI sensitivity to expression we performed a meta-analysis on 64 studies. Of these 

studies, 24 reported at least one expression sensitive loci in the fusiform. However, at the 

meta-analytic level, no significant cluster of expression sensitivity was seen in the 

fusiform after whole brain analysis (see Supplemental Table S1, S2, and Figure S4). 

Thus, consistent with the iEEG effect size for expression decoding in the fusiform seen 

here, there is some suggestion in the fMRI literature for expression sensitivity in the 

fusiform, but it is small and does not achieve statistical significance at the whole brain 

level. 
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Multiple, spatially and temporally segregated stages of face expression processing in 

the fusiform 

Using a data-driven analysis, posterior and mid-fusiform face patches were shown 

to contribute differentially to expression processing. The dividing point between post-

fusiform and mid-fusiform electrodes found in a data-driven manner is consistent with 

the anatomical border for the posterior and mid-fusiform face patches previously 

described, suggesting a strong coupling between the anatomical and functional divisions 

in fusiform 27. While posterior and mid-fusiform have been shown to be 

cytoarchitectonically distinct regions each with separate face sensitive patches 27,32,33, 

functional differences between these patches have remained elusive in the literature. The 

results here suggest that these anatomical and physiological distinctions correspond to 

functional distinctions in the role of these areas in face processing, as reflected in 

qualitatively different temporal dynamics in these regions for facial expression 

processing. Specifically, posterior fusiform participates in a relatively early stage of 

facial expression processing that may be related to structural encoding of faces while 

mid-fusiform demonstrates a distinct pattern of extended dynamics and participates in a 

later stage of processing that may be related to a more abstract and/or multifaceted 

representation of expression and emotion. These results support the revised model of 

fusiform function that posits the fusiform contributes to structural encoding of facial 

expression during the initial stages of processing 3,5, with the notable addition that it may 

be that only posterior fusiform contributes to this processing. 
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The early time period of expression sensitivity in posterior fusiform overlaps with 

strong face sensitive activity measured non-invasively around 170 ms after viewing a 

face, which is thought to reflect structural encoding of face information 22,23,34-36. Face 

sensitive activity in this time window has been shown to be insensitive to attention and is 

thought to reflect a “rapid, feed-forward phase of face-selective processing.”37 

Additionally, a face adaptation study showed that activity in this window reflects the 

actual facial expression rather than the perceived (adapted) expression 38. Consistent with 

these previous findings, the RSA results here show that the early posterior activity is 

more closely correlated to the physical features of the face that relate to facial expression 

compared to later, mid-fusiform activity.  

The expression sensitivity in mid-fusiform onset began later than the posterior 

fusiform (around 230 ms), and remained active until ~450 ms after viewing a face. Face 

sensitive activity in this time window has been shown to be sensitive to face familiarity 

and to attention 39,40. Previous studies and the results presented here show that face 

identity can be decoded from the activity in this later time window in mid-fusiform 8,41 

and reflects a distributed code for identity among regions of the face processing network 

42. Additionally, the previously mentioned face adaptation study showed that activity in 

this window reflects the subjectively perceived facial expression after adaptation 38. The 

RSA analysis here showed that the activity in this time window in mid-fusiform was not 

significantly correlated with physical features of the face and therefore may reflect more 

subjective expression perception. Taken together, these results suggest the mid-fusiform 

expression sensitivity in this later window reflect a more abstract and subjective 

representation of expression and may be related to integration of multiple face cues, 
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including identity and expression. This abstract and multifaceted representation is likely 

to reflect processes arising from interactions across the face processing network 4. 

 

To conclude, the results presented here support the hypothesis that the fusiform 

contributes to expression processing 3,5. The finding that the same part of the fusiform is 

sensitive to both identity and expression contradicts models that hypothesize separate 

pathways for their processing 1,2 and instead supports the hypothesis that form and 

motion are the critical functional separation 3. The results also show there is a qualitative 

distinction between face processing in posterior and mid-fusiform, with each contributing 

to temporally and functionally distinct stages of expression processing. This distinct 

contribution of these two fusiform patches suggest that the structural and 

cytoarchitectonic differences between posterior and mid-fusiform are associated with 

functional differences between the contributions of these areas to face perception. Taken 

together, the results here illustrate the dynamic role the fusiform plays in multiple stages 

of facial expression processing. 

 

 

Methods 
 

Participants 

The experimental protocols were approved by the Institutional Review Board of the 

University of Pittsburgh. Written informed consent was obtained from all participants. 

17 human subjects (8 male, 9 female) underwent surgical placement of subdural 

electrocorticographic electrodes or stereoelectroencephalography (together 
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electrocorticography and stereoelectroencephalography are referred to here as iEEG) as 

standard of care for seizure onset zone localization. The ages of the subjects ranged from 

19 to 65 years old (mean = 37.9, SD = 12.7). None of the participants showed evidence of 

epileptic activity on the fusiform electrodes used in this study nor any ictal events during 

experimental sessions.  

 

Experiment design 

In this study, each subject participated in two experiments. Experiment 1 was a 

functional localizer experiment and Experiment 2 was a face perception experiment. The 

experimental paradigms and the data pre-processing methods were similar to those 

described previously by Ghuman and colleagues 8. 

Stimuli 

In Experiment 1, 180 images of faces (50% male), bodies (50% male), words, 

hammers, houses, and phase scrambled faces were used as visual stimuli. Each of the six 

categories contained 30 images. Phase scrambled faces were created in MATLABTM by 

taking the 2-dimensional spatial Fourier spectrum of each of the face images, extracting 

the phase, adding random phases, recombining the phase and amplitude, and taking the 

inverse 2-dimensional spatial Fourier spectrum.  

In Experiment 2, face stimuli were taken from the Karolinska Directed Emotional 

Faces stimulus set. Frontal views and 5 different facial expressions (fearful, angry, happy, 

sad, and neutral) from 70 faces (50% male) in the database were used, which yielded a 

total of 200 unique images.  

Paradigms 
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In Experiment 1, each image was presented for 900 ms with 900 ms inter-trial 

interval during which a fixation cross was presented at the center of the screen (~ 10˚ x 

10˚of visual angle). At random, 1/3 of the time an image would be repeated, which 

yielded 480 independent trials in each session. Participants were instructed to press a 

button on a button box when an image was repeated (1-back).  

In Experiment 2, each face image was presented for 1500 ms with 500 ms inter-trial 

interval during which a fixation cross was presented at the center of the screen. This 

yielded 200 independent trials per session. Faces subtended approximately 5 degrees of 

visual angle in width. Subjects were instructed to report whether the face was male or 

female via button press on a button box. 

Paradigms were programmed in MATLABTM using Psychtoolbox and custom written 

code. All stimuli were presented on an LCD computer screen placed approximately 150 

cm from participants’ heads.  

All of the participants performed one session of Experiment 1. 9 of the subjects 

performed one session of Experiment 2, and the other 8 participants performed two or 

more sessions of Experiment 2. 

 

Data analysis 

Data preprocessing 

The electrophysiological activity was recorded using iEEG electrodes at 1000 Hz. 

Single-trial potential signal was extracted by band-passing filtering the raw data between 

0.2-115 Hz using a forth order Butterworth filter to remove slow and linear drift, and 

high frequency noise. The 60 Hz line noise was removed using a forth order Butterworth 
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filter with 55-65 Hz stop-band. Power spectrum density (PSD) at 2 – 100 Hz with bin 

size of 2 Hz and time-step size of 10 ms was estimated for each trial using multi-taper 

power spectrum analysis with Hann tapers, using FieldTrip toolbox 43. For each channel, 

the neural activity between 50 and 300 ms prior to stimulus onset was used as baseline, 

and the PSD at each frequency was then z-scored with respect to the mean and variance 

of the baseline activity to correct for the power scaling over frequency at each channel. 

The broadband gamma signal was extracted as mean z-scored PSD across 40-100 Hz. 

Event-related potential (ERP) and event-related broadband gamma signal (ERBB), both 

time-locked to the onset of stimulus from each trial, were used in the following data 

analysis. 

To reduce potential artifacts in the data, raw data were inspected for ictal events, and 

none were found during experimental recordings. Trials with maximum amplitude 5 

standard deviations above the mean across all the trials were eliminated. In addition, 

trials with a change of more than 25 µV between consecutive sampling points were 

eliminated. These criteria resulted in the elimination of less than 1% of trials.  

 

Electrode localization 

Coregistration of grid electrodes and electrode strips was adapted from the method of 

Hermes, et al. 44. Electrode contacts were segmented from high resolution post-operative 

CT scans of patients coregistered with anatomical MRI scans before neurosurgery and 

electrode implantation. The Hermes method accounts for shifts in electrode location due 

to the deformation of the cortex by utilizing reconstructions of the cortical surface with 

FreeSurferTM software and co-registering these reconstructions with a high-resolution 
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post-operative CT scan.  SEEG electrodes were localized with Brainstorm software 45 

using post-operative MRI co-registered with  pre-operative MRI images. 

 

Electrode selection 

Face sensitive electrodes were selected based on both anatomical and functional 

constraints. Anatomical constraint was based upon the localization of the electrodes on 

the reconstruction using post-implantation MRI. In addition, multivariate temporal 

pattern analysis (MTPA) was used to functionally select the electrodes that showed 

sensitivity to faces, comparing to other conditions in the localizer experiment (see below 

for MTPA details). Specifically, three criterions were used to screen and select the 

electrodes of interest: (1) electrodes of interest were restricted to those that were located 

in or near the fusiform gyrus; (2) electrodes were selected such that their peak 6-way 

classification d’ score for faces (see below for how this was calculated) exceeded 0.5 (p < 

0.01 based on a permutation test, as described below); (3) electrodes were selected such 

that the peak amplitude of the mean event related potential (ERP) and/or mean event 

related broadband gamma signal (ERBB) for faces was larger than the peak of mean ERP 

and/or ERBB for the other non-face object categories in the time window of 0 – 500 ms 

after stimulus onset.  

 

Multivariate temporal pattern analysis (MTPA) 

Multivariate methods were used instead of traditional univariate statistics because of 

their superior sensitivity 8,46-48. In this study, MTPA was applied to decode the coding of 

stimulus condition in the recorded neural activity. The timecourse of the decoding 
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accuracy was estimated by classification using a sliding time window of 100 ms. Both 

ERP and ERBB signals in the time window are combined as input features for the MTPA 

classifier, which yields 110 temporal features in each case (100 voltage potentials for 

ERP and 10 normalized mean power-spectrum density for ERBB). The 110 dimensional 

data were then used as input for the classifier. The goal of the classifier was to learn the 

patterns of the data distributions in such 110-dimensional space for different conditions 

and to decode the conditions of the corresponding stimuli from the testing trials. The 

classifier was trained on each electrode of each subject separately to assess the electrode 

sensitivity to faces and facial expressions. For Experiment 1, it was a 6-way classification 

problem and we specifically focused on the sensitivity of face category against other non-

face categories. Therefore, we used the sensitivity index (d’) for face category against all 

other non-face category as the metric of face sensitivity. d’ was calculated as Z(true 

positive rate) – Z(false positive rate) where Z is the inverse of the Gaussian cumulative 

distribution function. d’ was used because it is an unbiased measure of effect size and one 

that takes into both the true positive and false positive rates. It also has the advantage that 

it is an effect size measure that has similar interpretation as Cohen’s d 30,49 while also 

being applicable to multivariate classification. In addition, we provide full receiver-

operator characteristic (ROC) curves for completeness and as validation of d’ values. For 

Experiment 2, averaged pair-wise classification between every possible pair of facial 

expressions (10 pairs in total) was used.  

The choice of the classifier is an empirical problem. The performance of the classifier 

depends on whether the assumptions of the classifier approximate the underlying truth of 

the data. Additionally, the complexity of the model and the size of the dataset affect 
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performance (bias-variance trade-off). In this study, we employed Naïve Bayes (NB) 

classifiers, which assumes that each of the input features are conditionally independent 

from one another, and are Gaussian distributed. The classification accuracy of the 

classifier was estimated through 5-fold cross-validation. Specifically, all the trials were 

randomly and evenly spited into five folds. In each cross-validation loop, the classifier 

was trained based on four folds and the performance was evaluated on the left out fold. 

The overall performance was estimated by averaging cross all the 5 cross-validation 

loops. In general, different classifiers gave similar results. Specifically, we evaluated the 

performance of different classifiers (NB, support vector machines, and random forests) 

on a small subset of the data, and NB classifier tended to perform better than other 

commonly used classifiers in the current experiment, but other classifiers also gave 

similar results. In addition, our previous experience 48 with similar datasets also 

suggested that NB performed reasonably well in such classification analysis. We 

therefore used NB throughout the work presented here. The advantage of the Naïve 

Bayes classifier in the current study is likely due to intrinsic properties of the high 

dimensional problem 50 that make a high-bias low-variance classifier (i.e. NB classifier) 

preferable compared to the low-bias high-variance classifiers (i.e. support vector 

machines). 

 

Permutation testing 

Permutation testing was used to determine the significance of the sensitivity index d’. 

For each permutation, the condition labels of all the trials were randomly permuted and 

the same procedure as described above was used to calculate the d’ for each permutation. 
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The permutation was repeated for a total of 1000 times. The d’ of each permutation was 

used as the test statistic and the null distribution of the test statistic was estimated using 

the histogram of the permutation test. 

 

K-means clustering 

K-means clustering was used to cluster the electrodes into groups based on both 

functional and anatomical features 26. Specifically, we applied k-means clustering 

algorithm to the electrodes in a 2D feature space of MNI y-coordinate and the peak 

classification accuracy time. Note that each dimension was normalized through z-scoring 

in order to account for different scales in space and time. See Supplemental Information 

for detailed analysis using Bayesian information criterion and Silhouette analysis for 

model selection.  

 

Facial feature analysis 

The facial features from the stimulus images were extracted following the similar 

process as 8. Anatomical landmarks for each picture were first determined by IntraFace 

29, which marks 49 points on the face along the eyebrows, down the bridge of the nose, 

along the base of the nose, and outlining the eyes and mouth. Based on these landmarks 

we calculated 17 facial feature dimensions listed in Table S3. The values for these 17 

feature dimensions were normalized by subtracting the mean and dividing by the standard 

deviation across the all the pictures. The mean representation of each expression in facial 

feature space was computed by averaging across all 70 faces of the same expression.  
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Representational similarity analysis (RSA) 

RSA was used to analyze the neural representational space for expressions 51. With 

pair-wise classification accuracy between each pair of facial expressions, we constructed 

the representational dissimilarity matrix (RDM) of the neural representation of facial 

expressions, with the element in the i-th column of the j-th row in the matrix 

corresponding to the pairwise classification accuracy between the i-th and j-th facial 

expressions. The corresponding RDM in the facial feature space was constructed by 

assessing the Euclidean distance between the i-th and j-th facial expressions in the 17-

dimensional facial feature space. 
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Supplement Information 
	
Methods 

Clustering analysis 

We applied k-means clustering to the electrodes in the 2D space of MNI y-

coordinate and peak classification time for facial expressions, with different values of k, 

and evaluated the model performance by computing the Bayes information criterion 

(BIC) and the mean Silhouette coefficient (SC) across all points.  

 Following 1,2, the BIC was estimated using Schwartz criterion. Specifically, 

𝐵𝐼𝐶 = 𝑙 𝐷 𝜃 − )
*
𝑙𝑜𝑔𝑁, where 𝑙 𝐷 𝜃  is the log-likelihood of the data under the 

assumption of k-means (spherical Gaussian) taken at the maximum likelihood estimation 

of parameters 𝜃, 𝑝 is the total number of parameters in the model, and 𝑁 is the total 

number of data points.  

 Following 3, the Silhouette value for the i-th point was computed as 𝑆0 =

(𝑏0 − 𝑎0) max(𝑎0, 𝑏0), where 𝑎0 is the average within cluster distance for the i-th point, 

and 𝑏0 is the minimum average between cluster distance for the i-th point (minimized 

over all other clusters).  The mean SC was then estimated by averaging the Silhouette 

value over all data points. 

 

Meta-analysis 

Activation likelihood estimation (ALE, 4,5) was used for the meta-analysis of the 

neuroimaging literature. We first searched the online database of neuroimaging studies on 

Neurosynth.org and found around 300 imaging studies with the keyword “facial 

expressions”. We then further narrowed the list down to 64 fMRI by only including the 
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studies that had a direct full brain mapping by contrasting between emotional facial 

expressions, e.g. fear vs neutral, happy vs sad, etc. We only took into account the 

reported activation foci for the contrast between facial expressions. Then all of the 

activation foci in those relevant full brain map results were collected and extracted as 3D 

coordinates in MNI space. In the ALE, each of the extracted foci was assigned as the 

center of a Gaussian distribution, whose variance was scaled by the number of subjects in 

the corresponding experiment. These Gaussian distributions were then combined to build 

a full brain map of ALE. The ALE map was corrected for multiple comparison using 

cluster-based permutation test. Then we performed a spatial permutation test with 1000 

permutations to construct a null distribution of the full brain activation. The ALE and the 

corresponding statistical analysis were performed based on GingerALE 2.3.6 6,7. 		

	

Results 

Selection of models for k-means clustering 

We applied k-means clustering to the electrodes in the 2D space of MNI y-

coordinate and peak classification time for facial expressions, with different values of k, 

and evaluate the model performance by computing the Bayes information criterion (BIC) 

and the mean Silhouette coefficient (SC) across all points.  

As shown in Figure S3, for k = 1, BIC = -61.28; for k = 2, BIC = -54.63. 

Therefore, Bayes factor between the hypothesis (H1) that there is a cluster structure (k = 

2) and the null hypothesis (H0) that there is no cluster structure (k = 1) can be 

approximated as 𝐵𝐹 ≈ exp(=>?@A=>?B
*

). This approximation yields a 𝐵𝐹 > 20, which 
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suggests a strong evidence of H1 over H0. In other words, there is a strong clustering 

structure in the data.  

Moreover, for k = 2, BIC = -54.63, the mean SC = 0.601; for k = 3, BIC = -56.29, 

the mean SC = 0.490; for k = 4, BIC = -58.54, mean SC = 0.428. Both BIC and mean SC 

suggest that k = 2 is the optimal number of clusters. Therefore, k = 2 was used in the 

study. 

 

Meta-analysis of the neuroimaging literature 

In the broad neuroimaging literature, we found 64 fMRI studies with full brain 

contrasts between face expressions (See Table S1). Among the 64 studies, 24 studies 

report at least one significant focus of fusiform sensitivity to differences in expressions 

(See Figure S4 for activation map). A total of 999 significant foci were reported in those 

experiments for contrasts between different facial expressions (Figure S4). A full brain 

activation likelihood estimation (ALE) was performed and significance was assessed 

using a cluster-based permutation test. 4 significant clusters were found at the p < 0.01 

threshold, none of which included the fusiform. The MNI coordinates for the center and 

the corresponding label names of the 4 clusters are shown in Table S2.   
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Figure S1. The mean ROC curve and area-under-curve (AUC) for posterior fusiform electrodes 
and mid-fusiform electrodes at early (150-200 ms after stim onset) and late stage (400-450 ms 
after stim onset). 

	
	

	
Figure S2. The mean and standard error for classification between different face expressions in 
left and right fusiform electrodes. The timecourse of the left fusiform peaked at 220 ms after 
stimulus onset with mean d’ = 0.19, and the timecourse of the right fusiform peaked at 180 ms after 
stimulus onset with mean d’ = 0.18 (both p < 0.05, binomial test, Bonferroni corrected). 
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Figure S3. Clustering analysis. A) BIC of k-means models with different values of k (k = 1, 2, 3, 
4). B) Mean SC of k-means models with different values of k (k = 2, 3, 4, note that SC is not 
applicable for k = 1). C) The distribution of Silhouette Coefficients (SC) with different values of 
k in k-means clustering. From left to right, k = 2, 3, and 4. 
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Figure	S4.		Activation	map	for	facial	expressions.	(Red)	Whole	brain	activation	map	from	
all	64	relevant	fMRI	studies.	(Green	square)	Voxels	in	fusiform	reported	in	24/64	of	the	
fMRI	studies	that	have	significant	contrast	between	facial	expressions.	(Blue	dots)	iEEG	
electrodes	in	fusiform	that	have	significant	facial	expression	decoding.	(Blue	line)	the	
border	between	posterior	and	mid-fusiform	clusters	based	upon	clustering	analysis	in	the	
iEEG	electrodes.	

	
Table S1 A summary list for the 64 neuroimaging studies included in the meta-analysis 

 title authors journal year 
1 A common neural code for 

perceived and inferred emotion. 

Skerry AE, Saxe R The Journal of 
neuroscience : the 
official journal of the 
Society for 
Neuroscience 

2014 

2 A left amygdala mediated 
network for rapid orienting to 
masked fearful faces. 

Carlson JM, Reinke KS, 
Habib R 

Neuropsychologia 2009 

3 A neural network reflecting 
individual differences in 
cognitive processing of emotions 
during perceptual decision 
making. 

Meriau K, Wartenburger I, 
Kazzer P, Prehn K, Lammers 
CH, van der Meer E, 
Villringer A, Heekeren HR 

NeuroImage 2006 

4 Affect-specific activation of 
shared networks for perception 
and execution of facial 
expressions. 

Kircher T, Pohl A, Krach S, 
Thimm M, Schulte-Ruther M, 
Anders S, Mathiak K 

Social cognitive and 
affective 
neuroscience 

2013 
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5 Amygdala activation at 3T in 
response to human and avatar 
facial expressions of emotions. 

Moser E, Derntl B, Robinson 
S, Fink B, Gur RC, Grammer 
K 

Journal of 
neuroscience 
methods 

2007 

6 Amygdala integrates emotional 
expression and gaze direction in 
response to dynamic facial 
expressions. 

Sato W, Kochiyama T, Uono 
S, Yoshikawa S 

NeuroImage 2010 

7 Amygdala reactivity predicts 
automatic negative evaluations 
for facial emotions. 

Dannlowski U, Ohrmann P, 
Bauer J, Kugel H, Arolt V, 
Heindel W, Suslow T 

Psychiatry research 2007 

8 Amygdala response to facial 
expressions in children and 
adults. 

Thomas KM, Drevets WC, 
Whalen PJ, Eccard CH, Dahl 
RE, Ryan ND, Casey BJ 

Biological 
psychiatry 

2001 

9 Amygdala response to facial 
expressions reflects emotional 
learning. 

Hooker CI, Germine LT, 
Knight RT, D'Esposito M 

The Journal of 
neuroscience : the 
official journal of the 
Society for 
Neuroscience 

2006 

10 Anxiety predicts a differential 
neural response to attended and 
unattended facial signals of anger 
and fear. 

Ewbank MP, Lawrence AD, 
Passamonti L, Keane J, Peers 
PV, Calder AJ 

NeuroImage 2009 

11 Automatic emotion processing as 
a function of trait emotional 
awareness: an fMRI study. 

Lichev V, Sacher J, Ihme K, 
Rosenberg N, Quirin M, 
Lepsien J, Pampel A, Rufer 
M, Grabe HJ, Kugel H, 
Kersting A, Villringer A, 
Lane RD, Suslow T 

Social cognitive and 
affective 
neuroscience 

2014 

12 Beyond threat: amygdala 
reactivity across multiple 
expressions of facial affect. 

Fitzgerald DA, Angstadt M, 
Jelsone LM, Nathan PJ, Phan 
KL 

NeuroImage 2006 

13 Binding action and emotion in 
social understanding. 

Ferri F, Ebisch SJ, Costantini 
M, Salone A, Arciero G, 
Mazzola V, Ferro FM, 
Romani GL, Gallese V 

PloS one 2013 

14 Both of us disgusted in My 
insula: the common neural basis 
of seeing and feeling disgust. 

Wicker B, Keysers C, Plailly 
J, Royet JP, Gallese V, 
Rizzolatti G 

Neuron 2003 

15 Brain networks involved in 
haptic and visual identification of 
facial expressions of emotion: an 
fMRI study. 

Kitada R, Johnsrude IS, 
Kochiyama T, Lederman SJ 

NeuroImage 2010 

16 Brain responses to dynamic 
facial expressions of pain. 

Simon D, Craig KD, Miltner 
WH, Rainville P 

Pain 2006 

17 Brain responses to facial 
expressions of pain: emotional or 

Budell L, Jackson P, Rainville 
P 

NeuroImage 2010 
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motor mirroring? 

18 Cerebral integration of verbal and 
nonverbal emotional cues: impact 
of individual nonverbal 
dominance. 

Jacob H, Kreifelts B, Bruck C, 
Erb M, Hosl F, Wildgruber D 

NeuroImage 2012 

19 Cerebral regulation of facial 
expressions of pain. 

Kunz M, Chen JI, 
Lautenbacher S, Vachon-
Presseau E, Rainville P 

The Journal of 
neuroscience : the 
official journal of the 
Society for 
Neuroscience 

2011 

20 Classification images reveal the 
information sensitivity of brain 
voxels in fMRI. 

Smith FW, Muckli L, Brennan 
D, Pernet C, Smith ML, Belin 
P, Gosselin F, Hadley DM, 
Cavanagh J, Schyns PG 

NeuroImage 2008 

21 Converging evidence for the 
advantage of dynamic facial 
expressions. 

Arsalidou M, Morris D, 
Taylor MJ 

Brain topography 2011 

22 Decoding of affective facial 
expressions in the context of 
emotional situations. 

Sommer M, Dohnel K, 
Meinhardt J, Hajak G 

Neuropsychologia 2008 

23 Dynamic facial expressions 
evoke distinct activation in the 
face perception network: a 
connectivity analysis study. 

Foley E, Rippon G, Thai NJ, 
Longe O, Senior C 

Journal of cognitive 
neuroscience 

2012 

24 Dynamic stimuli demonstrate a 
categorical representation of 
facial expression in the 
amygdala. 

Harris RJ, Young AW, 
Andrews TJ 

Neuropsychologia 2014 

25 Emotions in motion: dynamic 
compared to static facial 
expressions of disgust and 
happiness reveal more 
widespread emotion-specific 
activations. 

Trautmann SA, Fehr T, 
Herrmann M 

Brain research 2009 

26 Enhanced neural activity in 
response to dynamic facial 
expressions of emotion: an fMRI 
study. 

Sato W, Kochiyama T, 
Yoshikawa S, Naito E, 
Matsumura M 

Brain research. 
Cognitive brain 
research 

2004 

27 Facial emotion modulates the 
neural mechanisms responsible 
for short interval time perception. 

Tipples J, Brattan V, Johnston 
P 

Brain topography 2015 

28 Facial expression and gaze-
direction in human superior 
temporal sulcus. 

Engell AD, Haxby JV Neuropsychologia 2007 

29 Facial expressions and complex 
IAPS pictures: common and 

Britton JC, Taylor SF, 
Sudheimer KD, Liberzon I 

NeuroImage 2006 
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differential networks. 

30 Frontal lobe networks for 
effective processing of 
ambiguously expressed emotions 
in humans. 

Nomura M, Iidaka T, Kakehi 
K, Tsukiura T, Hasegawa T, 
Maeda Y, Matsue Y 

Neuroscience letters 2003 

31 Functional imaging of face and 
hand imitation: towards a motor 
theory of empathy. 

Leslie KR, Johnson-Frey SH, 
Grafton ST 

NeuroImage 2004 

32 Functional neuroanatomy of 
perceiving surprised faces. 

Schroeder U, Hennenlotter A, 
Erhard P, Haslinger B, Stahl 
R, Lange KW, Ceballos-
Baumann AO 

Human brain 
mapping 

2004 

33 Functional responses and 
structural connections of cortical 
areas for processing faces and 
voices in the superior temporal 
sulcus. 

Ethofer T, Bretscher J, 
Wiethoff S, Bisch J, Schlipf S, 
Wildgruber D, Kreifelts B 

NeuroImage 2013 

34 Incongruence effects in 
crossmodal emotional 
integration. 

Muller VI, Habel U, Derntl B, 
Schneider F, Zilles K, 
Turetsky BI, Eickhoff SB 

NeuroImage 2011 

35 Integration of cross-modal 
emotional information in the 
human brain: an fMRI study. 

Park JY, Gu BM, Kang DH, 
Shin YW, Choi CH, Lee JM, 
Kwon JS 

Cortex; a journal 
devoted to the study 
of the nervous 
system and behavior 

2010 

36 Investigating the brain basis of 
facial expression perception 
using multi-voxel pattern 
analysis. 

Wegrzyn M, Riehle M, 
Labudda K, Woermann F, 
Baumgartner F, Pollmann S, 
Bien CG, Kissler J 

Cortex; a journal 
devoted to the study 
of the nervous 
system and behavior 

2015 

37 Is a neutral expression also a 
neutral stimulus? A study with 
functional magnetic resonance. 

Carvajal F, Rubio S, Serrano 
JM, Rios-Lago M, Alvarez-
Linera J, Pacheco L, Martin P 

Experimental brain 
research 

2013 

38 Leaving a bad taste in your 
mouth but not in my insula. 

von dem Hagen EA, Beaver 
JD, Ewbank MP, Keane J, 
Passamonti L, Lawrence AD, 
Calder AJ 

Social cognitive and 
affective 
neuroscience 

2009 

39 Masked presentations of 
emotional facial expressions 
modulate amygdala activity 
without explicit knowledge. 

Whalen PJ, Rauch SL, Etcoff 
NL, McInerney SC, Lee MB, 
Jenike MA 

The Journal of 
neuroscience : the 
official journal of the 
Society for 
Neuroscience 

1998 

40 Mind your left: spatial bias in 
subcortical fear processing. 

Siman-Tov T, Papo D, Gadoth 
N, Schonberg T, Mendelsohn 
A, Perry D, Hendler T 

Journal of cognitive 
neuroscience 

2009 

41 Multiple mechanisms of 
consciousness: the neural 
correlates of emotional 

Amting JM, Greening SG, 
Mitchell DG 

The Journal of 
neuroscience : the 
official journal of the 

2010 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/279166doi: bioRxiv preprint first posted online Mar. 8, 2018; 

http://dx.doi.org/10.1101/279166
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 43	

awareness. Society for 
Neuroscience 

42 Neural mechanism for judging 
the appropriateness of facial 
affect. 

Kim JW, Kim JJ, Jeong BS, 
Ki SW, Im DM, Lee SJ, Lee 
HS 

Brain research. 
Cognitive brain 
research 

2005 

43 Neural mechanism of 
unconscious perception of 
surprised facial expression. 

Duan X, Dai Q, Gong Q, 
Chen H 

NeuroImage 2010 

44 Neural responses to ambiguity 
involve domain-general and 
domain-specific emotion 
processing systems. 

Neta M, Kelley WM, Whalen 
PJ 

Journal of cognitive 
neuroscience 

2013 

45 Nonconscious emotional 
processing involves distinct 
neural pathways for pictures and 
videos. 

Faivre N, Charron S, Roux P, 
Lehericy S, Kouider S 

Neuropsychologia 2012 

46 Orbitofrontal and hippocampal 
contributions to memory for 
face-name associations: the 
rewarding power of a smile. 

Tsukiura T, Cabeza R Neuropsychologia 2008 

47 Orbitofrontal Cortex Reactivity 
to Angry Facial Expression in a 
Social Interaction Correlates with 
Aggressive Behavior. 

Beyer F, Munte TF, Gottlich 
M, Kramer UM 

Cerebral cortex 
(New York, N.Y. : 
1991) 

2014 

48 Positive facial affect - an fMRI 
study on the involvement of 
insula and amygdala. 

Pohl A, Anders S, Schulte-
Ruther M, Mathiak K, Kircher 
T 

PloS one 2013 

49 Preferential amygdala reactivity 
to the negative assessment of 
neutral faces. 

Blasi G, Hariri AR, Alce G, 
Taurisano P, Sambataro F, 
Das S, Bertolino A, 
Weinberger DR, Mattay VS 

Biological 
psychiatry 

2009 

50 Pupillary contagion: central 
mechanisms engaged in sadness 
processing. 

Harrison NA, Singer T, 
Rotshtein P, Dolan RJ, 
Critchley HD 

Social cognitive and 
affective 
neuroscience 

2006 

51 Reduced emotion processing 
efficiency in healthy males 
relative to females. 

Weisenbach SL, Rapport LJ, 
Briceno EM, Haase BD, 
Vederman AC, Bieliauskas 
LA, Welsh RC, Starkman 
MN, McInnis MG, Zubieta 
JK, Langenecker SA 

Social cognitive and 
affective 
neuroscience 

2014 

52 Segregating intra-amygdalar 
responses to dynamic facial 
emotion with cytoarchitectonic 
maximum probability maps. 

Hurlemann R, Rehme AK, 
Diessel M, Kukolja J, Maier 
W, Walter H, Cohen MX 

Journal of 
neuroscience 
methods 

2008 

53 Similarities and differences in 
perceiving threat from dynamic 

Kret ME, Pichon S, Grezes J, 
de Gelder B 

NeuroImage 2011 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/279166doi: bioRxiv preprint first posted online Mar. 8, 2018; 

http://dx.doi.org/10.1101/279166
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 44	

faces and bodies. An fMRI study. 

54 Stop looking angry and smile, 
please: start and stop of the very 
same facial expression 
differentially activate threat- and 
reward-related brain networks. 

Muhlberger A, Wieser MJ, 
Gerdes AB, Frey MC, Weyers 
P, Pauli P 

Social cognitive and 
affective 
neuroscience 

2011 

55 Temporal pole activity during 
perception of sad faces, but not 
happy faces, correlates with 
neuroticism trait. 

Jimura K, Konishi S, 
Miyashita Y 

Neuroscience letters 2009 

56 The amygdala and FFA track 
both social and non-social face 
dimensions. 

Said CP, Dotsch R, Todorov 
A 

Neuropsychologia 2010 

57 The amygdala processes the 
emotional significance of facial 
expressions: an fMRI 
investigation using the 
interaction between expression 
and face direction. 

Sato W, Yoshikawa S, 
Kochiyama T, Matsumura M 

NeuroImage 2004 

58 The behavioral and neural effect 
of emotional primes on 
intertemporal decisions. 

Luo S, Ainslie G, Monterosso 
J 

Social cognitive and 
affective 
neuroscience 

2014 

59 The changing face of emotion: 
age-related patterns of amygdala 
activation to salient faces. 

Todd RM, Evans JW, Morris 
D, Lewis MD, Taylor MJ 

Social cognitive and 
affective 
neuroscience 

2011 

60 The functional correlates of face 
perception and recognition of 
emotional facial expressions as 
evidenced by fMRI. 

Jehna M, Neuper C, Ischebeck 
A, Loitfelder M, Ropele S, 
Langkammer C, Ebner F, 
Fuchs S, Schmidt R, Fazekas 
F, Enzinger C 

Brain research 2011 

61 The highly sensitive brain: an 
fMRI study of sensory 
processing sensitivity and 
response to others' emotions. 

Acevedo BP, Aron EN, Aron 
A, Sangster MD, Collins N, 
Brown LL 

Brain and behavior 2014 

62 The Kuleshov Effect: the 
influence of contextual framing 
on emotional attributions. 

Mobbs D, Weiskopf N, Lau 
HC, Featherstone E, Dolan 
RJ, Frith CD 

Social cognitive and 
affective 
neuroscience 

2006 

63 The stimuli drive the response: 
an fMRI study of youth 
processing adult or child 
emotional face stimuli. 

Marusak HA, Carre JM, 
Thomason ME 

NeuroImage 2013 

64 Viewing facial expressions of 
pain engages cortical areas 
involved in the direct experience 
of pain. 

Botvinick M, Jha AP, Bylsma 
LM, Fabian SA, Solomon PE, 
Prkachin KM 

NeuroImage 2005 

 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/279166doi: bioRxiv preprint first posted online Mar. 8, 2018; 

http://dx.doi.org/10.1101/279166
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 45	

 

Table S2  the MNI coordinates for the weighted center, volume, and the corresponding 
label name of the significant clusters in the ALE map from meta-analysis 

Cluster # X Y Z Volume (mm3) Lateralization Label 

1 23 -3 -18 6088 right amygdala 

2 -22 -4 -18 4640 left amygdala 

3 56 -42 5 2520 right middle/superior temporal gyrus 

4 3 11 53 1464 right superior frontal gyrus 

 

Table S3 17 features used for the facial feature space 

Feature	#	 Feature	name	
1	 eyebrow	length	
2	 inter-eyebrow	distance	
3	 eye	width	
4	 inter-eyes	distance	
5	 vertical	distance	between	eyes	and	nosetip	
6	 horizontal	length	of	the	nose	
7	 distance	between	nose	and	upper	lip	
8	 face	height	
9	 face	width	
10	 eye	height	
11	 width	of	the	mouth	
12	 intense	of	red	on	cheeks	
13	 intense	of	green	on	cheeks	
14	 intense	of	blue	on	cheeks	
15	 contrast	polarity	between	eyes	and	nose	
16	 eye	area	
17	 eye	mouth	ratio	
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