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Lipski WJ, DeStefino VJ, Stanslaski SR, Antony AR, Cram-
mond DJ, Cameron JL, Richardson RM. Sensing-enabled hip-
pocampal deep brain stimulation in idiopathic nonhuman primate
epilepsy. J Neurophysiol 113: 1051–1062, 2015. First published
November 26, 2014; doi:10.1152/jn.00619.2014.—Epilepsy is a de-
bilitating condition affecting 1% of the population worldwide. Med-
ications fail to control seizures in at least 30% of patients, and deep
brain stimulation (DBS) is a promising alternative treatment. A
modified clinical DBS hardware platform was recently described
(PC�S) allowing long-term recording of electrical brain activity such
that effects of DBS on neural networks can be examined. This study
reports the first use of this device to characterize idiopathic epilepsy
and assess the effects of stimulation in a nonhuman primate (NHP).
Clinical DBS electrodes were implanted in the hippocampus of an
epileptic NHP bilaterally, and baseline local field potential (LFP)
recordings were collected for seizure characterization with the PC�S.
Real-time automatic detection of ictal events was demonstrated and
validated by concurrent visual observation of seizure behavior. Sei-
zures consisted of large-amplitude 8- to 25-Hz oscillations originating
from the right hemisphere and quickly generalizing, with an average
occurrence of 0.71 � 0.15 seizures/day. Various stimulation param-
eters resulted in suppression of LFP activity or in seizure induction
during stimulation under ketamine anesthesia. Chronic stimulation in
the awake animal was studied to evaluate how seizure activity was
affected by stimulation configurations that suppressed broadband
LFPs in acute experiments. This is the first electrophysiological
characterization of epilepsy using a next-generation clinical DBS
system that offers the ability to record and analyze neural signals from
a chronically implanted stimulating electrode. These results will direct
further development of this technology and ultimately provide insight
into therapeutic mechanisms of DBS for epilepsy.

deep brain stimulation; hippocampus; temporal lobe epilepsy; local
field potential

EPILEPSY IS A COLLECTION of diverse disorders, varying in patho-
genesis, site of seizure onset, and response to treatment. Tem-
poral lobe epilepsy (TLE) is a common form of the disorder,
characterized by seizures originating in the temporal lobe, most
frequently in the hippocampus and amygdala. In cases where

pharmacological therapy either fails to adequately control sei-
zures or is not well tolerated, resective surgery is an effective
treatment, suppressing disabling seizures in 50–80% of pa-
tients undergoing mesial TLE (MTLE) resections (Engel et al.
2003). Seizure freedom occurs in fewer than 50% of patients
undergoing extratemporal resections (de Tisi et al. 2011),
however, and resective surgery is not an option for cases where
the seizure focus is not well localized or when resection would
cause unacceptable functional deficits. These problems, cou-
pled with the nonreversible nature of resective surgery, under-
score the need for new and more effective alternative treat-
ments for medically refractory epilepsy.

Deep brain stimulation (DBS) is a promising emerging
therapy for focal epilepsy. Most efforts to date have focused on
modulating nodes within the limbic circuit of Papez, a network
often implicated in seizure generation and propagation. Two
types of brain neuromodulation, anterior thalamic DBS and
responsive neurostimulation at seizure foci, are supported by
Class I evidence of effectiveness: The SANTE (Stimulation of
the Anterior Nucleus of Thalamus for Epilepsy) trial (Fisher et
al. 2010) reported a 29% greater reduction in seizures in
patients who received stimulation in the anterior nucleus of
thalamus compared with the control group. In contrast to this
traditional open-loop stimulation paradigm, the RNS (Respon-
sive Neurostimulation) trial (Spencer et al. 2011) evaluated
closed-loop or responsive stimulation of specific seizure foci,
including the hippocampus, in patients with medically refrac-
tory partial epilepsy. A similar response was reported, with a
modest 21% greater reduction in seizure frequency in stimu-
lated subjects compared with control subjects at the conclusion
of the blinded period (4 mo). The median percent reduction in
seizures in the open-label period was 44% at 1 yr and 53% at
2 yr. In addition, smaller, open-labeled trials have suggested
that direct stimulation of the hippocampus and amygdala may
be effective in seizure suppression (Velasco et al. 2000, 2007a,
2007b; Vonck et al. 2002). Despite these recent advances in
applying DBS to the treatment of epilepsy, poor understanding
of the mechanisms underlying the effects of electrical stimu-
lation on seizure networks remains a significant barrier to
improving therapeutic efficacy.
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To elucidate the effect of electrical stimulation on the
activity of neural substrates of TLE, we performed DBS
concurrently with local field potential (LFP) recordings in the
hippocampus of a nonhuman primate (NHP) with idiopathic
epilepsy, using a novel platform for simultaneous stimulation
and long-term recording of electrical brain activity (PC�S,
Medtronic) (Afshar et al. 2012; Freestone et al. 2013; Ry-
apolova-Webb et al. 2014; Stypulkowski et al. 2013, 2014).
Using this modified version of a standard clinical DBS device,
Stypulkowski et al. recently examined the acute effects of DBS
on limbic neural networks in the normal ovine brain. They
found that the same stimulation pattern that induced seizures at
higher stimulation intensities in the hippocampus caused a
transient suppression of LFP activity at lower stimulus inten-
sities. This finding led us to hypothesize that seizure suppres-
sion may be achieved through chronic stimulation using pat-
terns that acutely inhibit LFP activity. To test this hypothesis,
we first characterized a case of idiopathic epilepsy in a NHP,
using the PC�S system to record interictal LFPs bilaterally
from the hippocampus and to detect seizures in real time.
Furthermore, we examined the effect of acute and chronic
hippocampal stimulation paradigms on spontaneous LFPs and
on epileptiform activity. This study aimed to improve our
understanding of the neural dynamics underlying TLE, and to
elucidate the way in which they are altered by specific hip-
pocampal stimulation patterns.

MATERIALS AND METHODS

Animal subject. One male 6-yr-old NHP (Macaca mulatta; 10 kg)
was used for this study. All aspects of animal care were in accord with
the Guide for the Care and Use of Laboratory Animals (National
Research Council, 1996), and all procedures were approved by the
University of Pittsburgh Institutional Animal Care and Use Commit-
tee. The NHP was observed to have spontaneous recurrent seizures for
at least 2 yr prior to study initiation. A high-resolution, 3-T magnetic
resonance imaging (MRI) scan demonstrated no abnormal findings.
The animal originally had been treated with levetiracetam but had
received no treatment during the year prior to beginning the study.
This animal had not undergone any invasive procedures prior to this

study, having only begun to be used in behavioral experiments by
another investigator when the seizure disorder was discovered.

Interventional MRI-guided DBS implantation. The animal under-
went interventional MRI (iMRI)-guided implantation of DBS elec-
trodes into the hippocampus bilaterally, in a Siemens MAGNETOM
Allegra 3-T MRI scanner, using the ClearPoint (MRI Interventions,
Irvine, CA) platform (Larson et al. 2012; Richardson et al. 2011). The
surgical approach involved a transfrontal trajectory under general
anesthesia and standard aseptic conditions. Lead extenders were
tunneled subcutaneously in the posterior neck and subsequently were
connected to the Activa PC�S pulse generator, which was implanted
in the subcutaneous space between the scapulae.

Recording. Intracranial LFP recording was carried out bilaterally in
the hippocampus with standard clinical DBS electrodes (model 3389,
Medtronic, Minneapolis, MN). The LFP signals were amplified,
filtered from 0.5 Hz to 100 Hz, digitized at a sampling frequency of
either 200 or 422 Hz, and recorded with the chronically implanted
Activa PC�S device (investigational device, Medtronic). Recording
parameters were set, and data were saved to memory and subsequently
uploaded for analysis periodically via a wireless Medtronic model
8180 sensing programmer, a modified tablet computer, and the
Medtronic model 37642 patient programmer designed to noninva-
sively interface with the Activa PC�S neurostimulator via radiote-
lemetry, as previously described (Ryapolova-Webb et al. 2014; Sty-
pulkowski et al. 2013). During telemetry the monkey was anesthetized
with ketamine (Ketaset, 5 mg/kg), as data download required �30
min per session.

LFPs were recorded between specific contacts on each electrode,
such that the contacts used for stimulation were positioned between
the recording contacts. An automatic seizure detector utilizing the
support vector machine (SVM) detection capability of the Activa
PC�S was trained based on seizure events recorded during a training
period using timed recordings as described previously (Afshar et al.
2012; Shoeb et al. 2009). Briefly, seizures observed under ketamine
anesthesia provided an initial training data set to derive the frequency
band, detector threshold, and duration constraints that could be used
for SVM seizure detection. The PC�S detection algorithm was then
refined based on training data collected over several weeks of chronic
recording. After the chronic training period the SVM detector was
retrained and finalized for optimal seizure detection performance
based on visual validation of seizure events. Based on this training,
the SVM detector used an onset duration of 25 s and a termination
duration of 2 s to record time domain signals for detected seizure

Table 1. Studies of hippocampal deep brain stimulation for epilepsy

Reference Patient Type n Stimulation Site Current/Voltage Frequency
PW,
�s Mode Effects

Velasco et al.
(2007b)

MTLE 9 Bilateral HPC 300 �A 130 Hz 450 1 min ON; 4 min
OFF

Seizure reduction

Vonck et al. (2002) TLE 3 Bilateral AMY and
HPC

�3 V 130–200 Hz 60–450 Continuous Seizure reduction

Boon et al. (2007) MTLE 12 Bilateral AMY and
HPC

2–3 V 130 Hz 450 Continuous Seizure reduction: 1 seizure
free; 10 seizure
reduction; 1
nonresponder

Tellez-Zenteno et al.
(2006)

MTLE Left HPC 1.8–4.5 V 190 Hz 90 Continuous No significant improvement

Boëx et al. (2011) MTLE 8 Bilateral AMY and
HPC

0.5–2 V 130 Hz 450 Continuous Seizure reduction

McLachlan et al.
(2010)

MTLE 2 Bilateral HPC Variable 185 Hz 90 Continuous 33% Seizure reduction

Cukiert et al. (2014) TLE 9 Unilateral or bilateral
HPC

4 V 130 Hz 300 Continuous �66% Seizure reduction

Tyrand et al. (2012) TLE 12 Bilateral AMY and
HPC

1 V 130 Hz 210/450 Acute stimulation
only

No seizure data reported

TLE, temporal lobe epilepsy; MTLE, mesial TLE; HPC, hippocampus; AMY, amygdala; PW, pulse width.
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events. Hippocampal activity was also recorded across all electrode
pairs with a feature within the Activa PC�S device called montage
search. This feature records activity in the hippocampus serially for 30
s on each electrode pair (6 30-s recordings for each 4-contact
electrode).

Stimulation. DBS was delivered unilaterally through standard clin-
ical DBS electrodes (Medtronic) with the Activa PC�S device (in-
vestigational device, Medtronic). The device is capable of delivering
charge-balanced square voltage pulses at frequencies of 5–250 Hz
with a pulse width (PW) of 30–450 �s. Stimulation parameters were
programmed with the 8840 Clinician Programmer (Medtronic). For
monopolar stimulation, an electrode contact was used as the cathode
and the implanted PC�S device case was used as the anode. For
bipolar stimulation, current was passed between specific electrode
contact pairs.

Acute stimulation. To assess the acute effects of DBS on LFP
suppression, stimulation was delivered with the monkey under ket-
amine anesthesia (Ketaset, 10 mg/kg). To measure the acute effects of
stimulation on spontaneous LFP power, 10-s stimulation epochs were
delivered between selected contacts with at least 50 s between epochs.
Any trials during which stimulation precipitated a seizure were not
included in the analysis of power. Stimulation was delivered at
various combinations of frequency (50 Hz, 130 Hz) and PW (60 �s,
300 �s) in an exploratory manner in order to maximize LFP suppres-
sion in the 4–40 Hz bandwidth. These parameters were chosen on the
basis of previous studies that demonstrated suppression of local neural
activity (Fisher et al. 2010; Stypulkowski et al. 2013) (Table 1).

Chronic stimulation. For chronic awake testing, stimulation was pro-
grammed via the clinician programmer while the monkey was briefly
immobilized with a squeeze cage. Chronic stimulation was applied in
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Fig. 1. A: deep brain stimulation (DBS) electrodes
were implanted bilaterally in the hippocampus. B:
contact configuration. L, left; R, right. C1 (L) and
C2 (R): total power (0–60 Hz, 60 s) recorded
between different pairs of contacts in montage
mode. Power was lower in the dorsal location com-
pared with ventral contacts. D: box plots of group
spectral power data (0–60 Hz, 30 s) from local field
potential (LFP) recordings carried out every 4 h over
a period of 42 days plotted as a function of time of
day for L (D1) and R (D2) hippocampus. Hippocam-
pal LFP power followed a circadian rhythm. Ket-
amine increased spontaneous power only on R side.
E: gamma band power (25–60 Hz, 30 s) showed a
marked selective increase in R hippocampus follow-
ing ketamine. *Significantly different from #; † (ket-
amine) different from all other groups (ANOVA, P �
0.05). Box plot labels in E also apply to D.
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cycling mode, with a 15-s ON period and a 30-s OFF period. Cycling
stimulation was used for chronic trials, based on the SANTE trial
stimulation parameters (Fisher et al. 2010).

Data analysis. Spectral analysis of LFP recordings was performed
in MATLAB (MathWorks, Natick, MA) with fast Fourier transform
(FFT) methods. To determine total power within a given bandwidth,
an N-point discrete Fourier transform was computed on the recorded
voltage time series, which was zero-padded to the next power of 2 (N).
Power was then summed within the bandwidth of interest. For
spontaneous recordings and acute stimulation experiments, 30- or 60-s
time segments were used at either 200- or 422-Hz sampling rate.
Comparisons of LFP power recorded at different times of day and
under ketamine anesthesia were analyzed by ANOVA with Bonfer-
roni correction for multiple comparisons. Time-frequency spectro-
gram and coherogram plots were calculated with multitaper methods
adapted from the Chronux (http://chronux.org/) analysis package
(Mitra and Bokil 2008). A moving window of 5 s was used with a 1-s
step size, and a 1-s moving window was used with a 0.1-s step size.
To assess the effects of acute stimulation at different DBS parameters,
LFP power in the 4–40 Hz bandwidth, during pre- and poststimula-
tion 10-s epochs (stimulation), was analyzed at different stimulation
intensities (voltage), frequencies, and PWs with a two-factor repeated-
measure ANOVA (with stimulation and voltage as factors) with
Bonferroni correction for multiple comparisons. To further investigate
the potential selective effect of acute stimulation on LFP power within
individual bandwidths, a two-factor ANOVA (with bandwidth and
voltage as factors) with Holm-Sidak method for multiple comparisons
was applied. Cross-correlograms between simultaneous recordings for
the left and right hippocampus were calculated in MATLAB based on
a 3-s time window centered on the area of interest, which was
determined by examining the coherogram of time domain data.
Statistics are reported as means � SE.

RESULTS

Electrode placement. Medtronic 3389 leads were success-
fully placed in the bilateral hippocampi via a transfrontal
approach using iMRI with real-time visualization of electrode
placement. The center of the artifact of each contact on the
final intraoperative scan was marked with BrainLab iPlan
software and merged onto a preoperative, high-resolution 3-T
MRI for optimum visualization of anatomical placement (Fig.
1A). Contacts 0–2 and 8–10 were located in the left and right
hippocampus, respectively, with contacts 3 and 11 situated just
dorsal to the hippocampus (Fig. 1B). As expected, LFP mon-
tage recordings carried out consecutively between different
electrode contact pairs showed increased LFP power recorded
between middle electrode contacts on each side compared with
both the dorsal and ventral contact pairs that straddled the
edges of the hippocampus (Fig. 1, C1 and C2).

Spontaneous recording. To characterize baseline physiol-
ogy, the PC�S was initially programmed to acquire 30- or 60-s
bilateral LFP recordings, in bipolar mode using the middle
contact pairs, every 4 h over a period of 42 days. These data
revealed variable LFP spectra that featured prominent theta and
beta peaks. Overall oscillatory power followed a circadian
pattern, particularly on the right side, where power was more
variable than on the left (Fig. 1, D1 and D2). This circadian
pattern was present across physiological frequency bands ex-
amined (Fig. 1, D and E). Ketamine anesthesia (10 mg/kg)
significantly increased LFP power across frequency bands,
particularly in the gamma range, in the right but not the left
hippocampus (Fig. 1, D and E), consistent with a right hip-

pocampal hyperexcitable zone having the lowest threshold for
seizure generation.

Seizure characterization. On the basis of clinical observa-
tion of seizure events before and after initiation of this study,
the NHP was characterized as likely having a focal, complex
partial and secondarily generalizing epilepsy. Likewise, elec-
trographic ictal events captured while observing the animal
under anesthesia were always accompanied by stereotypic jaw
opening followed by varying durations of generalized tonicity
and low-amplitude clonic movement of the extremities.

Electrographic seizure activity was monitored intermittently
for a total of 56 days over a period of 144 days. Automatic
detection yielded an average of 0.71 � 0.15 seizures/day, with
ictal activity detected in the right hippocampus prior to the left
in each case. The average seizure duration was 56.7 � 3.0 s.
Seizure frequency and duration were relatively stable over the
course of the experiment (Fig. 2, A and B). Seizures were more
likely to occur early in the day compared with late in the day
(Fig. 2C). Of 16 seizures for which a predetection period was
recorded, 10 exhibited a stereotyped initiation pattern in the
right hippocampal electrode. This initiation pattern was char-
acterized by a pronounced slow wave followed by a low-
amplitude ripple (wave-ripple) that quickly evolved into high-
amplitude oscillations (Fig. 3A). In these instances, ictal onset
in the left hippocampal electrode lagged behind the right side
by 7.7 � 0.2 s. Seizures in which a clear wave-ripple was not
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Fig. 2. A and B: frequency of seizure occurrence (A) and seizure duration (B)
remained stable over the time course of the study. C: distribution of seizure
times throughout the day. Seizures occurred more frequently early in the day
compared with late in the day.
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observed on the right side were characterized by a shorter left
onset delay of 1.3 � 0.9 s (Fig. 3B).

Group analysis of the detected oscillations showed an in-
crease in spectral power above 3 Hz during seizures, compared
with spontaneous, interictal activity, with a prominent peak
at 5.6 Hz. The theta-band oscillation at ictal onset was most
pronounced on the right side (Fig. 4A) and evolved to
include higher-frequency bands—including a prominent
gamma burst—as the seizure progressed (Fig. 4B). During the
first 20–30 s of the seizure, the theta oscillation gradually
decreased in frequency, producing a characteristic spectral
chirp (Fig. 4C). During this initial phase, there was a brief
period of high coherence between the right and left sides
centered at 5.5 � 0.1 Hz with a consistent phase lag in the left
side of 23.6 � 2.7 ms (Fig. 4, D and E). These results are
consistent with a seizure onset zone in the right mesial tem-
poral lobe. The time course and spectral content of ictal events
were similar to seizures observed in human TLE with intra-
cranial recording in the hippocampus (Fig. 5).

Acute stimulation. Acute stimulation under ketamine anes-
thesia had different effects on spontaneous activity depending
on stimulation parameters and stimulation site. Stimulation
parameters were explored during acute stimulation trials look-
ing at various stimulation intensities (voltage), frequencies, and
PWs. In these trials, stimulation at high voltages (2–3 V)
through electrode contacts in the right hippocampus precipi-
tated seizures that spread to the left hippocampus, while
stimulation at lower voltages (�3.0 V) sometimes resulted in
suppression of spontaneous LFP activity, which lasted several
seconds after the end of stimulation (suppression carryover).
The thresholds for suppression carryover and afterdischarge
thresholds for various stimulation patterns are summarized in
Table 2. Hippocampal LFP power suppression in the 4–40 Hz

bandwidth was achieved most frequently with 50-Hz, 300-�s
PW stimulation. An example of hippocampal responses to
acute stimulation is shown in Fig. 6. This figure illustrates a
stimulation-evoked seizure (Fig. 6A) as well as voltage-depen-
dent suppression of hippocampal activity (Fig. 6B) The 50-Hz,
300-�s PW stimulation, however, also resulted in voltage-
dependent activation, depending on the contacts used. In par-
ticular, bipolar stimulation in the right hippocampus resulted in
local suppression of LFP power when it was delivered in the
dorsal hippocampus (Fig. 7A; 9-11�) compared with activa-
tion when it was delivered in the ventral hippocampus (Fig.
7C; 8-10�). Bipolar stimulation through the middle contacts
(9-10�) in the right hippocampus resulted in a bimodal re-
sponse, with suppression at lower voltages and activation at
higher voltages (Fig. 7B). Monopolar stimulation at 1.6 V also
was effective in suppressing spontaneous LFP activity (Fig.
7D); however, this mode of stimulation was observed to cause
craniocervical muscle activation, presumably via direct elec-
trical stimulation resulting from using the case as the positive
node. Monopolar stimulation with a more narrow PW (60 �s)
and a higher frequency (130 Hz) did not significantly alter
spontaneous power in acute experiments (Fig. 7, E and F). To
further characterize the suppression and activation of hip-
pocampal activity by different patterns of acute stimulation,
these effects were analyzed with respect to power within
individual bandwidths (theta, 4–8 Hz; alpha, 8–12 Hz; beta,
12–25 Hz; gamma, 25–40 Hz). While there was no effect of
bandwidth examined on the suppression caused by bipolar
stimulation in the dorsal (9-11�) and middle (9-10�) contacts
(2-factor ANOVA; significant main effect of voltage, P �
0.002; no effect of bandwidth, P � 0.23 at 9-11�, P � 0.93 at
9-10�), the activation following bipolar stimulation at the
ventral (8-10�) contacts was dependent on bandwidth [main
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Fig. 3. Seizures were characterized electro-
physiologically based on bilateral LFP record-
ings from the hippocampus: representative
traces of R and L hippocampal LFP (top) and
detail showing seizure onset (bottom) during 2
types of seizures. A: seizure onset was consis-
tently characterized by a pronounced slow
wave (*) in the R LFP, followed by a low-
amplitude ripple quickly evolving into high-
amplitude oscillations. B: occasionally, sei-
zure onset was observed simultaneously in L
and R hippocampus as large-amplitude oscil-
lations.
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effect of voltage (P � 0.001) and bandwidth (P � 0.001),
significant interaction between voltage � bandwidth (P �
0.001)]. Specifically, after stimulation at the highest intensity
(3.0 V, 8-10�), activation was greatest in the beta (677 � 98%
of baseline) and gamma (623 � 203% of baseline) bands,
intermediate in the alpha band (310 � 17% of baseline), and
lowest in the theta range (142 � 31% of baseline). Analysis of
monopolar stimulation yielded a significant effect of band-
width only using a 50 Hz, 300 �s pattern, with significant
suppression in the alpha bandwidth compared with theta [alpha �
88.6 � 3.9% of baseline; beta � 102 � 5.0% of baseline;
significant effect of voltage (P � 0.001) and bandwidth (P �

0.035)]. Effects of stimulation using a 60-�s pulse width did
not depend on the bandwidth examined.

Chronic stimulation. To assess the effects of a chronic
stimulation pattern in the seizure onset zone on local LFPs and
seizure frequency, right hippocampal stimulation was cycled
(15 s ON/30 s OFF) continuously for 5 days with monopolar
stimulation (trial 1; Fig. 8A; 9-C�, 1.6 V) and separately for
15 days with bipolar stimulation (trial 2; Fig. 8B; 9-10�, 2.0
V). Cycling stimulation ON/OFF durations were selected on
the basis of results from the acute stimulation trials indicating
that suppression could be achieved with 15 s of stimulation
using these parameters but could recover �30 s later. The
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monopolar stimulation parameters (9-C�, 50 Hz, 300 �s, 1.6
V) were selected based on levels that produced hippocampal
suppression during acute trials. Bipolar stimulation was se-
lected for the second trial to avoid muscle contractions from
electrical spread elicited by setting the pulse generator case as
the positive node during monopolar stimulation. The bipolar
voltage levels (2.0 V) were selected on the basis of acute trial
suppression results.

Neither trial resulted in a significant suppression of seizures
[ANOVA comparison of seizures per day before (PRE) during
(STIM), and after (POST) stimulation; trial 1: PRE � 1.5,
STIM � 0.73, POST � 0.33, P � 0.39; trial 2: PRE � 0.50,
STIM � 0.40, POST � 2.5, P � 0.25]. Because of the limited
capacity of the PC�S device (51 min total at 200 Hz sampling
rate), it was not possible to record continuously during an
entire chronic stimulation session; recordings were instead
triggered by seizure detection. However, to determine whether
the suppression of spontaneous LFP activity observed under
ketamine anesthesia was present during cycling stimulation in
the awake animal, a brief period of awake cycling stimulation
(9-10�, 2.0 V) was recorded continuously in a separate session
(data not shown). Comparison of pre- to poststimulation power
for each cycle in this awake session revealed no suppression

following each ON period (prestimulation power � 0.259 �V2,
poststimulation power � 0.256 �V2; P � 0.50, t-test), con-
trasting results of acute stimulation using the same parameters
under ketamine anesthesia.

To determine whether the seizure onset during chronic
cycling stimulation was correlated with cycling stimulation,
the onset of each seizure detected within trial 2 was examined.
The onset times of 11 seizures that occurred during the trial 2
stimulation period were not correlated to the timing of simu-
lation cycle (Fig. 8C). It should be noted, however, that seizure
onset could not be detected if it occurred during the ON phase
because of stimulation artifact.

Characteristic spectral coherence chirps within the theta
band that occurred prior to chronic stimulation (Fig. 8D) were
also observed during cycling stimulation (Fig. 8E). However,
the peak in coherence between left and right hippocampus was
delayed in seizures recorded during cycling stimulation com-
pared with those recorded in the absence of stimulation [Fig.
8F; time to peak L-R coherence without (11.0 � 0.4 s) and
during (15.2 � 0.4 s) cycling stimulation; P � 0.01 t-test].
Cross-correlation analysis of coherence revealed no difference
between the frequency of peak theta coherence during seizures
(Fig. 8G; STIM � 5.48 � 0.06 Hz, NO STIM � 5.43 � 0.09
Hz; P � 0.67, t-test); however, phase lag in theta coherence
was significantly delayed during stimulation (Fig. 8H; STIM �
23.6 � 2.7 ms, NO STIM � 32.8 � 2.4 ms; P � 0.023, t-test).

DISCUSSION

In this study, a next-generation sensing-enabled DBS system
was utilized for the first time in idiopathic epilepsy. Implanta-
tion of this clinical device in a NHP with spontaneous recurring
seizures enabled us to validate novel device features in a highly
unique clinical model. Chronic recording, acute stimulation,
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Table 2. Summary of acute stimulation effects

Stimulation Pattern Suppression Carryover AD Threshold

8-10� 1.8 V, 2 V
9-10� 2.6 V, 2.8 V 3 V
9-11� 2.6 V, 2.8 V 3 V
9-C� 1.6 V, 1.8 V 3 V
10-Cs� 2 V �2.5 V

AD, afterdischarge.
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and chronic stimulation experiments revealed electrophysio-
logical characteristics of the animal’s seizure onset zone and
response to local stimulation. Acute stimulation was found to
either activate or inhibit local activity in the hippocampus,
depending on stimulation parameters. However, stimulation
that caused acute inhibition did not cause seizure suppression
when the same stimulation was applied chronically.

Despite the inherently higher value of NHP models over
those in the rodent brain, relatively little NHP epilepsy work
has been done in the past 50 years. A variety of approaches
have been attempted for modeling human TLE in the NHP.
Early electrical stimulation studies in NHPs have shown that
seizures can be induced in NHPs through kindling (Delgado
1959; Eidelberg et al. 1959; Goddard et al. 1969). While results
from these experiments have yielded a species dependency,
commonly reported problems included lengthy kindling dura-
tions, unstable spontaneous seizure development, and incon-
sistent brain damage. Pharmacological models utilizing alu-
mina gel (Ribak et al. 1998), pilocarpine (Perez-Mendes et al.
2011), bicuculline (Gunderson et al. 1999), and penicillin
(Blauwblomme et al. 2011) successfully recreated complex
partial seizures in NHPs; however, they failed to create some
of the pathophysiological and clinical signs seen in human
TLE. These models have face validity but limited construct
validity, considering the differences in how seizures originate
in the models compared with human TLE. The study of
naturally occurring TLE in a NHP mitigates these limitations.
However, because of the difficulties associated with identify-
ing multiple NHPs with a seizure disorder, this study is limited
to a single case. It is therefore important to use caution in
drawing general conclusions from these findings, and to un-

derstand them in the context of other preclinical and clinical
studies.

Timed bilateral recordings from the NHP hippocampi re-
vealed a highly variable diurnal pattern of activity, character-
ized by elevated LFP power and higher variance during the
night compared with daytime. The animal’s sleep-wake cycle,
as well as interictal discharges, may have contributed to this
pattern of activity. Sleep-wake-related changes in LFP power
are expected to be symmetric between hemispheres, while
asymmetric changes may correspond to interictal pathological
activity. The exaggerated pattern of increased LFP power in
the right hippocampus suggests that frequent interictal dis-
charges occurred on this side.

The predominant right hippocampal onset of the detected
ictal events and the characteristic initiation pattern were also
consistent with a right temporal lobe focus. Furthermore,
right-left theta band coherence (�0.75) typically peaked
after the right-sided onset, suggesting that epileptic activity
spread to the left hippocampus during this time, where it
continued independently. The lag time of 23.6 � 2.8 ms
observed in seizure theta synchronization between right and
left hippocampal LFPs is consistent with interhemispheric
delay of �25 ms (Queiroz and Mello 2007; Votaw and
Lauer 1963). Administration of ketamine caused a marked
increase in LFP power selectively in the right hippocampus
and consistently gave rise to seizures. The actions of this
NMDA receptor antagonist have been implicated in seizure
generation; however, its role appears to be complex. While
ketamine has been reported to have some anticonvulsant
effects in a variety of animal models, other preclinical and
clinical reports suggest the drug may precipitate epileptic
discharges (Ghasemi and Schachter 2011). Dose, mode of

B

0

100

50

2.5 V 2.6 V 2.8 V 3.0 V

10 s
-100

-30

-65
fre

qu
en

cy
 (H

z)

log(Pow
er)

C

-100

-30

-65

log(Pow
er)

10 s

2.0 V

0

100

50

fre
qu

en
cy

 (H
z)

A

BASELINE STIM POST

5 sec 10 sec 5 sec2.5 sec 2.5 sec

Fig. 6. Acute stimulation modulates local LFP activity. A:
example of a bipolar (9-11�) stimulation trial at 50 Hz, 300 �s
that precipitated a seizure. B: example of bipolar (9-10�)
stimulation trials at 50 Hz, 300 �s where increasing voltage
resulted in suppression carryover of spontaneous power. C:
effects of acute (10 s) stimulation were assessed based on
power in the 4–40 Hz bandwidth during a 5-s window during
stimulation (STIM) and after stimulation (POST) relative to
the power in the 5-s window before stimulation (BASELINE).
Stimulation was delivered in bipolar mode between a pair of
specific electrode contacts or between a specific contact and
the PC�S device case.

1058 HIPPOCAMPAL STIMULATION IN NONHUMAN PRIMATE EPILEPSY

J Neurophysiol • doi:10.1152/jn.00619.2014 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (132.183.013.026) on February 4, 2020.



administration, and the resulting site of action may be
critical determinants of ketamine’s conflicting effects on
seizure activity. Consistent with the present findings, how-
ever, ketamine has been reported to increase gamma oscil-
lations in rat hippocampus (Caixeta et al. 2013).

The spectral content of ictal events was similar to seizures
observed in human TLE (see Fig. 5). The occurrence of
spectral chirps at ictal onset has also been reported and has
implications for understanding epileptogenesis as well as for
improving seizure detection algorithms (Molaee-Ardekani et
al. 2010; Schiff et al. 2000). Thus these findings are consistent
with focal, right MTLE. Comparison to human data indicates
that the NHP seizures are consistent with seizures arising in
hippocampus. This hypothesis cannot be proven definitively, as
it is not feasible in this study to implant additional depth

electrodes to definitively map the seizure focus, as would occur
in a patient undergoing intracranial monitoring in an epilepsy
monitoring unit. Nonetheless, we have shown that this animal
provides a valid model for idiopathic, nonlesional MTLE.

Acute stimulation. Consistent with the hypothesis that the
seizure focus was located in the right temporal lobe, acute
stimulation in the right— but not left— hippocampus was
capable of precipitating seizures under ketamine anesthesia.
Furthermore, stimulation though electrode contacts that re-
corded the highest spontaneous hippocampal energy (8-
10�) resulted in the lowest afterdischarge thresholds,
shown in Table 2. In accordance with recently reported
results of stimulation in the normal ovine hippocampus,
50-Hz stimulation at a 300-�s PW resulted in suppression of
spontaneous activity but could also induce afterdischarges at
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higher stimulation voltages (Stypulkowski et al. 2013).
Notably, acute bipolar stimulation-induced suppression oc-
curred across the frequency bands examined, while activa-
tion was highest in the beta and gamma bands. This suggests
that acute suppression may reflect a general inhibition of
activity or a broadband desynchronization of local networks.
By contrast, the observed activation appears to be a reflec-
tion of high-frequency afterdischarges.

Given the increased LFP power and apparently lowered
seizure threshold induced by ketamine, caution must be exer-
cised in interpreting the results of acute stimulation under
ketamine anesthesia. However, several lines of evidence sug-
gest that a common mechanism underlies both naturally oc-
curring seizures and ketamine-induced epileptic discharges
observed in these experiments. First, ketamine-induced ictal
events bear the same electrographic signature as naturally
occurring seizures and were confirmed to produce the same
semiology in the anesthetized animal. Second, ketamine pref-
erentially affects right hippocampal LFP activity, suggesting
that ketamine lowers the seizure threshold of the right-sided
seizure focus. Therefore, the results of acute stimulation were
used to guide the selection of potentially therapeutic stimula-
tion parameters in chronic stimulation experiments.

Chronic stimulation. Based on the successful suppression of
spontaneous activity with right-sided acute stimulation under
ketamine anesthesia, two chronic cycling stimulation trials
were performed. However, no significant decrease in seizure
frequency was observed. One possibility for why significant
suppression was not achieved in these two chronic trials is that
the 30-s OFF time may be too long. In some of the acute
stimulation trials, hippocampal suppression of spontaneous
activity recovered in �10 s. This stimulation OFF cycle time is
one area that requires further exploration in future chronic
trials. Furthermore, longer periods of chronic stimulation may
be required to produce a therapeutic effect, in line with results
reported in human clinical trials (Fisher et al. 2010; Spencer et
al. 2011).

There are multiple challenges in developing an effective
DBS-based therapy for epilepsy. First, there is an incomplete
understanding of how DBS affects neural activity locally and
how it affects afferent and efferent regions. Electrical stimu-
lation of neural tissue has complex electrochemical effects and
can generate both orthodromic and antidromic action potentials
(David et al. 2010; McCracken and Grace 2007, 2009; Mc-
Intyre et al. 2004; Merrill et al. 2005). The therapeutic sup-
pression of neural activity by DBS has been hypothesized to
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involve synaptic inhibition, synaptic depression, and depolar-
ization blockade (McIntyre et al. 2004). Another challenge is
that the mechanism of seizure generation, and therefore re-
sponse to potential therapeutic interventions, is still poorly
understood and may vary between subjects. While suppression
of local activity within a seizure focus might be intended to
serve as a functional lesion, network regulation and long-term
plasticity have also been hypothesized as potential seizure
suppression mechanisms (Hellier et al. 2009).

In contrast to the ability to manipulate the clinical stimula-
tion device in our epileptic NHP over multiple experiments,
human studies of direct hippocampal stimulation have almost
exclusively branched from an initial report of 10 patients
undergoing intracranial monitoring. In the initial study, hip-
pocampal depth electrodes were used to deliver continuous
low-amplitude, high-frequency stimulation to the hippocampus
(Velasco et al. 2000) as biphasic 450-�s pulses at 200–400 �A
and 130 Hz. In this study, and subsequent open-label studies
using similar parameters, significant reductions in the number
of seizures have been reported (see Table 1). No large-scale
trials, however, have been undertaken to rigorously assess
hippocampal stimulation in MTLE.

Similarly, parameters for the multicenter, double-blind,
randomized trial of bilateral stimulation of the anterior
nucleus of the thalamus for localization-related epilepsy
(SANTE) were derived from those used previously in the
treatment of movement disorders, rather than evolving from
preclinical work in adequate models. In this trial of contin-
uous but intermittent stimulation, 60% of patients had sei-
zure onset in the temporal lobe (Fisher et al. 2010). Al-
though stimulation did reduce seizure rates in these patients,
the results were less robust than hoped for, with a median
seizure reduction compared with baseline of 44% in the
stimulated group versus a 22% reduction in the control
group. In an alternative approach to continuous stimulation,
90 patients with MTLE participated in the randomized
multicenter double-blind controlled trial of responsive focal
cortical stimulation (RNS System) (Heck et al. 2014). With
this platform, each electrode contact can sense and stimu-
late, and the neurostimulator typically is programmed to
detect and provide stimulation to interictal epileptiform
abnormalities. The median percent reduction in seizures for
this group after 2 yr of stimulation was 55%, although it is
not clear how many of these patients received direct cortical
versus direct hippocampal stimulation. In both of these
studies, maximal benefit was obtained over the course of 2
yr, further highlighting the need to develop neuromodula-
tion techniques that acutely and directly alter ictogenesis.

Our initial strategy has been to use the sensing ability of the
PC�S system to monitor network effects of direct hippocam-
pal stimulation, using parameters previously shown to achieve
broadband suppression and to terminate stimulation-induced
afterdischarges in the normal ovine brain. The lack of effect on
seizure frequency in the reported data indicates the difficulties
inherent to developing this technology. We have clearly dem-
onstrated, however, the potential for sensing-enabled stimula-
tion devices to provide a large amount of data that enables
electrophysiological characterization of the seizure network
before, during, and after stimulation. The complexity of this
data, and the need to devise platforms for analyzing similar
data in a patient-specific fashion, are also apparent. Future

work will include the testing of stimulation parameters in
response to the detection of interictal biomarkers of epilepti-
form activity, such as high-frequency oscillations (Kondylis et
al. 2014; Staba et al. 2004).

Conclusions. Chronic LFP recording in the primate epileptic
brain, using a clinical device, is a highly valuable tool for
developing neurosurgical techniques for real-time seizure de-
tection and intervention. In this report, we have demonstrated
that stimulation parameters previously shown to acutely sup-
press hippocampal activity may not be sufficient for the treat-
ment of TLE. However, the NHP model presented here has the
potential to fill an important gap in translational approaches to
developing better therapeutic strategies to epilepsy (French et
al. 2013). In particular, its similarity to human brain and its
ability to accommodate a clinical sensing-enabled DBS system
make the NHP model ideal to further our understanding of the
etiology of the disease and refine DBS therapeutic paradigms.
Furthermore, the ability to detect and record seizures chroni-
cally gives this system the potential to monitor the long-term
therapeutic and potential adverse effects of different configu-
rations of biomarker-sensing and triggered DBS therapy.
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